Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful Mini-LEDs for Thin Touchscreens

19.09.2011
Osram Opto Semiconductors has developed an infrared light-emitting diode (IRED) for use in very thin optical touchscreens. Called the SFH 4053, the small new lamps are housed in a frame surrounding a display.

The lamps create a veritable web of light that overlays the display. If a user touches the screen, the motion interferes with the light grid at that particular location, enabling the system to recognize that it is being touched. The new system takes up only 0.45 millimeters of the frame’s height and can be easily incorporated into a tablet PC. Despite its small size, the diode is powerful enough to light up a laptop display, for example.


An optical touchscreen’s components are mounted in a frame known as a “bezel,” which surrounds the display and is between 0.5 and one millimeter thick. Rows of IREDs and detectors located opposite to each other create an invisible, infrared grid. If a user taps the display, his or her finger will interrupt the light ray and the signal to the corresponding receptors will cease.

Larger displays, such as those used in notebook and all-in-one (AiO) computers are flooded with infrared light from two corners. Camera sensors located next to the IREDs only receive a signal if a finger reflects the light emitted on the display. Although this method requires few components, it does need IREDs with a very high radiant flux. The stronger an infrared LED is, the larger a touchscreen can be made with the same number of components.

Osram Opto Semiconductors is a division of the Siemens subsidiary Osram. For the new IRED, the company uses a small chip LED housing that measures only 0.5 x 1 millimeter, making it one of the thinnest on the market. The LED emits light at a wavelength of 850 nanometers, which is invisible to the human eye but can be easily detected by infrared receptors and camera sensors.

Due to the use of highly efficient thin-film chip technology, the IRED needs little electricity to emit lots of light and therefore helps to prolong the intervals between battery-charging for portable devices. The lamp has a radiant flux of 35 mW during continuous operation with a current of 70 mA. The output can be several times higher in pulse mode.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: LED Mini-LEDs Opto Osram Semiconductor Thin Clients Touchscreens

More articles from Power and Electrical Engineering:

nachricht World's smallest optical implantable biodevice
26.04.2018 | Nara Institute of Science and Technology

nachricht Cell membrane inspires new ultrathin electronic film
26.04.2018 | University of Tokyo

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>