Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful LED Flash for Smartphones

26.11.2010
Researchers from Osram Opto Semiconductors have developed an LED chip that makes it possible to offer smaller pocket projectors, vehicle headlights, and cell phone camera flashes.

In combination with a new package the new UX:3 chip is 50 percent brighter than the precursor package. In combination with an optimized lens, the light is much better distributed.


The chip is used in the Oslux LED, which is therefore considerably more efficient at high currents than previous LEDs and is impressive for its very high luminous efficiency over a small area.

At a distance of one meter, for instance, such an LED flash evenly illuminates a diagonal of 90 cm. That is sufficient for capturing sharp images even under unfavorable light conditions. At 150 lux, the LED with the UX:3 chip is 50 lux brighter than its predecessor. As a result, high-quality images can be taken even with very flat cell phones or smartphones.

Normally, when taking photos at night with a camera phone, the flash is capable of relatively bright illumination of the middle of the image area, but the corners appear somewhat dark. This is because the luminosity of the LED itself is too low — it just can’t produce enough light — and the lens doesn’t distribute the light evenly enough. This creates a bright circle with dark edges, an effect that occurs especially under very unfavorable light conditions. To change this situation, the researchers from Osram rearranged the internal layout of the LED chip.

The chip consists of a metallic lattice and two semiconductor layers. The lattice conducts the current to the upper layer, from where the electrons move to the lower layer and release energy in the form of light. With conventional LEDs, however, the metallic lattice is positioned above both layers and thus diminishes the light. The effect is similar to what would happen if you place a dark cloth over a light bulb. The researchers at Osram therefore moved the lattice all the way to the bottom, enabling them to increase the “wall plug efficiency,” which describes the relationship between the radiant flux of the chip and the electrical power that flows through it.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>