Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful LED Flash for Smartphones

26.11.2010
Researchers from Osram Opto Semiconductors have developed an LED chip that makes it possible to offer smaller pocket projectors, vehicle headlights, and cell phone camera flashes.

In combination with a new package the new UX:3 chip is 50 percent brighter than the precursor package. In combination with an optimized lens, the light is much better distributed.


The chip is used in the Oslux LED, which is therefore considerably more efficient at high currents than previous LEDs and is impressive for its very high luminous efficiency over a small area.

At a distance of one meter, for instance, such an LED flash evenly illuminates a diagonal of 90 cm. That is sufficient for capturing sharp images even under unfavorable light conditions. At 150 lux, the LED with the UX:3 chip is 50 lux brighter than its predecessor. As a result, high-quality images can be taken even with very flat cell phones or smartphones.

Normally, when taking photos at night with a camera phone, the flash is capable of relatively bright illumination of the middle of the image area, but the corners appear somewhat dark. This is because the luminosity of the LED itself is too low — it just can’t produce enough light — and the lens doesn’t distribute the light evenly enough. This creates a bright circle with dark edges, an effect that occurs especially under very unfavorable light conditions. To change this situation, the researchers from Osram rearranged the internal layout of the LED chip.

The chip consists of a metallic lattice and two semiconductor layers. The lattice conducts the current to the upper layer, from where the electrons move to the lower layer and release energy in the form of light. With conventional LEDs, however, the metallic lattice is positioned above both layers and thus diminishes the light. The effect is similar to what would happen if you place a dark cloth over a light bulb. The researchers at Osram therefore moved the lattice all the way to the bottom, enabling them to increase the “wall plug efficiency,” which describes the relationship between the radiant flux of the chip and the electrical power that flows through it.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>