Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful LED Flash for Smartphones

26.11.2010
Researchers from Osram Opto Semiconductors have developed an LED chip that makes it possible to offer smaller pocket projectors, vehicle headlights, and cell phone camera flashes.

In combination with a new package the new UX:3 chip is 50 percent brighter than the precursor package. In combination with an optimized lens, the light is much better distributed.


The chip is used in the Oslux LED, which is therefore considerably more efficient at high currents than previous LEDs and is impressive for its very high luminous efficiency over a small area.

At a distance of one meter, for instance, such an LED flash evenly illuminates a diagonal of 90 cm. That is sufficient for capturing sharp images even under unfavorable light conditions. At 150 lux, the LED with the UX:3 chip is 50 lux brighter than its predecessor. As a result, high-quality images can be taken even with very flat cell phones or smartphones.

Normally, when taking photos at night with a camera phone, the flash is capable of relatively bright illumination of the middle of the image area, but the corners appear somewhat dark. This is because the luminosity of the LED itself is too low — it just can’t produce enough light — and the lens doesn’t distribute the light evenly enough. This creates a bright circle with dark edges, an effect that occurs especially under very unfavorable light conditions. To change this situation, the researchers from Osram rearranged the internal layout of the LED chip.

The chip consists of a metallic lattice and two semiconductor layers. The lattice conducts the current to the upper layer, from where the electrons move to the lower layer and release energy in the form of light. With conventional LEDs, however, the metallic lattice is positioned above both layers and thus diminishes the light. The effect is similar to what would happen if you place a dark cloth over a light bulb. The researchers at Osram therefore moved the lattice all the way to the bottom, enabling them to increase the “wall plug efficiency,” which describes the relationship between the radiant flux of the chip and the electrical power that flows through it.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>