Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NIST time code to boost reception for radio-controlled clocks

11.03.2013
The National Institute of Standards and Technology (NIST) is changing the way it broadcasts time signals that synchronize radio-controlled "atomic" clocks and watches to official U.S. time in ways that will enable new radio-controlled timepieces to be significantly more robust and reliable.

This new time broadcast protocol will not only improve the performance of new radio-controlled clocks and watches, but will encourage the development of new timekeeping products that were not practical with the old broadcast system because of local interference or other limitations.

For example, appliances such as refrigerators, microwave ovens and thermostats, as well as traffic light timers and sprinkler systems will be able to take advantage of this new phase modulation broadcast.

Popular radio-controlled timekeepers, which range from wristwatches to wall clocks, are not really atomic clocks—though that's often in their name—but they do set themselves by listening to low-frequency AM time broadcasts from the NIST radio station WWVB in Fort Collins, Colo. Those broadcasts are synchronized to the NIST atomic clock ensemble in nearby Boulder, Colo.

However, sometimes the radio-controlled clocks have difficulty accurately picking up the WWVB time signal because of the clock's location, local radio interference, effects of buildings, and other problems. Moreover, a time broadcast from England on the same frequency also interferes with devices on the east coast of the United States that rely on the NIST broadcast, according to John Lowe, station manager for WWVB.

To solve these problems, Lowe says, NIST has developed, tested and is now beginning to implement the new phase-modulation WWVB signal. Like a traditional AM radio station, time information is encoded in the WWVB broadcast by changes in the strength or amplitude of the radio signal. Phase modulation adds an additional layer of information encoded by shifting the phase of the carrier wave. (The crests of two waves that are "in phase" pass a point at the same time. If one is phase-shifted, the crest will arrive a little before or after the other.)

This change significantly improves signal reception and overall performance of new products that are designed to utilize this new protocol. Legacy clocks and watches will still continue to function as they have because the amplitude modulation remains the same, but they will not benefit from the increased performance of the new phase modulation protocol, Lowe said.

These new products and non-networked systems will be able to take advantage of the improved NIST broadcast format thanks to next generation receiver chips that will begin entering the marketplace in 2013.

For more on radio-controlled clocks work with WWVB, see http://www.nist.gov/pml/div688/grp40/radioclocks.cfm

James Burrus | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>