Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST quantum refrigerator offers extreme cooling and convenience

11.03.2013
Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a solid-state refrigerator that uses quantum physics in micro- and nanostructures to cool a much larger object to extremely low temperatures.

What's more, the prototype NIST refrigerator, which measures a few inches in outer dimensions, enables researchers to place any suitable object in the cooling zone and later remove and replace it, similar to an all-purpose kitchen refrigerator. The cooling power is the equivalent of a window-mounted air conditioner cooling a building the size of the Lincoln Memorial in Washington, D.C.

"It's one of the most flabbergasting results I've seen," project leader Joel Ullom says. "We used quantum mechanics in a nanostructure to cool a block of copper. The copper is about a million times heavier than the refrigerating elements. This is a rare example of a nano- or microelectromechanical machine that can manipulate the macroscopic world."

The technology may offer a compact, convenient means of chilling advanced sensors below standard cryogenic temperatures—300 milliKelvin (mK), typically achieved by use of liquid helium—to enhance their performance in quantum information systems, telescope cameras, and searches for mysterious dark matter and dark energy.

As described in Applied Physics Letters,* the NIST refrigerator's cooling elements, consisting of 48 tiny sandwiches of specific materials, chilled a plate of copper, 2.5 centimeters on a side and 3 millimeters thick, from 290 mK to 256 mK. The cooling process took about 18 hours. NIST researchers expect that minor improvements will enable faster and further cooling to about 100 mK.

The cooling elements are sandwiches of a normal metal, a 1-nanometer-thick insulating layer, and a superconducting metal. When a voltage is applied, the hottest electrons "tunnel" from the normal metal through the insulator to the superconductor. The temperature in the normal metal drops dramatically and drains electronic and vibrational energy from the object being cooled.

NIST researchers previously demonstrated this basic cooling method** but are now able to cool larger objects that can be easily attached and removed. Researchers developed a micromachining process to attach the cooling elements to the copper plate, which is designed to be a stage on which other objects can be attached and cooled. Additional advances include better thermal isolation of the stage, which is suspended by strong, cold-tolerant cords.

Cooling to temperatures below 300 mK currently requires complex, large and costly apparatus. NIST researchers want to build simple, compact alternatives to make it easier to cool NIST's advanced sensors. Researchers plan to boost the cooling power of the prototype refrigerator by adding more and higher-efficiency superconducting junctions and building a more rigid support structure.

This work is supported by the National Aeronautics and Space Administration.

* P.J. Lowell, G.C. O'Neil, J.M. Underwood and J.N. Ullom. Macroscale refrigeration by nanoscale electron transport. Applied Physics Letters. 102, 082601 (2013); Published online 26 Feb. 26, 2013. http://dx.doi.org/10.1063/1.4793515.

** See 2005 NIST Tech Beat article, "Chip-scale Refrigerators Cool Bulk Objects," at http://www.nist.gov/pml/div686/chip_scale_042105.cfm.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>