Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA and CSA robotic operations advance satellite servicing

14.03.2012
NASA's Robotic Refueling Mission (RRM) experiment aboard the International Space Station has demonstrated remotely controlled robots and specialized tools can perform precise satellite-servicing tasks in space. The project marks a milestone in the use of the space station as a technology test bed.

"We and our partners are making important technological breakthroughs," NASA Administrator Charles Bolden said. "As we move ahead toward reaching our exploration goals, we will realize even more benefits from humans and robots working together in space."

The Canadian Space Agency's (CSA) robotic handyman, Dextre, successfully completed the tasks March 7-9 on the space station's external RRM module, designed to demonstrate the tools, technologies and techniques needed to robotically refuel and repair satellites.

"The Hubble servicing missions taught us the importance and value of getting innovative, cutting-edge technologies to orbit quickly to deliver great results," said Frank Cepollina, a veteran leader of five Hubble Space Telescope servicing missions and associate director of the Satellite Servicing Capabilities Office (SSCO) at NASA's Goddard Space Flight Center in Greenbelt, Md. "The impact of the space station as a useful technology test bed cannot be overstated. Fresh satellite-servicing technologies will be demonstrated in a real space environment within months instead of years. This is huge. It represents real progress in space technology advancement."

Before a satellite leaves the ground, technicians fill its fuel tank through a valve that is sealed, covered and designed never to be accessed again. The RRM experiment demonstrates a remote-controlled robot can remove these barriers and refuel such satellites in space.

Dextre successfully retrieved and inspected RRM tools, released safety launch locks on tool adapters, and used an RRM tool to cut extremely thin satellite lock wire. These operations represent the first use of RRM tools in orbit and Dextre's first participation in a research and development project.

RRM was developed by SSCO and is a joint effort between NASA and CSA. During the next two years, RRM and Dextre will conduct several servicing tasks using RRM tools on satellite parts and interfaces inside and covering the cube-shaped RRM module.

NASA expects the RRM results to reduce the risks associated with satellite servicing. It will encourage future robotic servicing missions by laying the foundation for them. Such future missions could include the repair, refueling and repositioning of orbiting satellites.

"We are especially grateful to CSA for their collaboration on this venture," Cepollina said. "CSA has played a pivotal role in the development of space robotics, from the early days of the space shuttle to the work they are doing with Dextre on space station."

During the three-day RRM Gas Fittings Removal task, the 12-foot (3.7-meter) Dextre performed the most intricate task ever attempted by a space robot: cutting two separate "lock wires" 20 thousandths of an inch (0.5 millimeters) in diameter using the RRM Wire Cutter Tool (WCT). Deftly maneuvered by ground-based mission operators and Dextre, the WCT smoothly slid its hook under the individual wires and severed them with only a few millimeters of clearance. This wire-cutting activity is a prerequisite to removing and servicing various satellite parts during any future in-orbit missions.

RRM operations are scheduled to resume in May 2012 with the completion of the gas fittings removal task. The RRM Refueling task is scheduled for later this summer. NASA and CSA will present RRM results at the Second International Workshop on on-Orbit Servicing, hosted by Goddard May 30-31, 2012.

Dextre and RRM are an example of how robots are changing operations in space. Another is Robonaut 2, or R2, a project of NASA and General Motors. R2, the first human-like robot, was launched into space in 2011 and is a permanent resident of the International Space Station.

For more information about RRM or the On-Orbit Servicing Workshop, visit:
http://ssco.gsfc.nasa.gov
For information about NASA and agency programs, visit:
http://www.nasa.gov

Dewayne Washington | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>