Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mines could provide geothermal energy

29.07.2009
Mine shafts on the point of being closed down could be used to provide geothermal energy to local towns. This is the conclusion of two engineers from the University of Oviedo, whose research is being published this month in the journal Renewable Energy. The method they have developed makes it possible to estimate the amount of heat that a tunnel could potentially provide.
"One way of making use of low-intensity geothermal energy is to convert mine shafts into geothermal boilers, which could provide heating and hot water for people living nearby", Rafael Rodríguez, from the Oviedo Higher Technical School of Mining Engineering, tells SINC. This type of energy, which is hardly used in Spain, is obtained from the internal heat of the Earth.

The engineer and his colleague María Belarmina Díaz have developed a "semi-empirical" method (part mathematical and part experimental) to calculate the amount of heat that could be produced by a mine tunnel that is due to be abandoned, based on studies carried out while it is still in use.

"When the mine is still active one can access the tunnels easily in order to gather data about ventilation and the properties of the rocks, as well as to take samples and design better circuits, and even programme the closure of some sections in order to use them for geothermal energy production", says the engineer, who stresses that, although geothermal energy can be made use of once the mine is closed, "it is no longer possible by that stage to make any modifications, or to gather any useful data to evaluate and improve the system".

The study looks into geothermal exploitation of a two-kilometre-long mine shaft, in which the temperature of the rocks 500m below the surface is around 30º C. This is typical of many of the mining areas in Asturias, although it could also be applied to other parts of the world. Water could be forced in through tubes at 7º C and return at 12º C, a big enough heat gain to be of benefit to towns located above the mines.

Advantages of geothermal energy from mines

Rodríguez and Díaz highlight the benefits of building geothermal boilers in mine shafts in that, aside from their predictable energy production levels, they also function practically as an open tube system "but without any risk of heat contamination of aquifers".

Using geothermal energy also helps to reduce CO2 emissions, and is not dependent upon climatic conditions (unlike other renewable energies such as solar or wind power). Other advantages are that these facilities make use of a country's own resources, do not require new developments on large sites, do not pollute the immediate environment, and are believed to be profitable over the long term.

Geothermal energy can be used directly in family homes, housing developments, swimming pools, fish farms, industrial units and other buildings.

Reference:

Rafael Rodríguez, María B. Díaz. "Analysis of the utilization of mine galleries as geothermal heat exchangers by means a semi-empirical prediction method". Renewable Energy 34 (7): 1716�, 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>