Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Microbe Strain Makes More Electricity, Faster

30.07.2009
Researchers have coaxed Geobacter, the sediment-loving microbe who produce electric current from mud and wastewater, to evolve a new strain. It dramatically increases power output per cell, overall bulk power, and with a thinner biofilm, cuts the time to produce electricity on the electrode.

In their most recent experiments with Geobacter, the sediment-loving microbe whose hairlike filaments help it to produce electric current from mud and wastewater, Derek Lovley and colleagues at the University of Massachusetts Amherst supervised the evolution of a new strain that dramatically increases power output per cell and overall bulk power. It also works with a thinner biofilm than earlier strains, cutting the time to reach electricity-producing concentrations on the electrode.

“This new study shows that output can be boosted and it gives us good insights into what it will take to genetically select a higher-power organism.” The work, supported by the Office of Naval Research and the U.S. Department of Energy, is described in the August issue of the journal, Biosensors and Bioelectronics, now available online.

Findings open the door to improved microbial fuel cell architecture and should lead to “new applications that extend well beyond extracting electricity from mud,” Lovley says. In the new experiments, the UMass Amherst researchers adapted the microbe’s environment, which pushed it to adapt more efficient electric current transfer methods.

“In very short order we increased the power output by eight-fold, as a conservative estimate,” says Lovley. “With this, we’ve broken through the plateau in power production that’s been holding us back in recent years.” Now, planning can move forward to design microbial fuel cells that convert waste water and renewable biomass to electricity, treat a single home’s waste while producing localized power (especially attractive in developing countries), power mobile electronics, vehicles and implanted medical devices, and drive bioremediation of contaminated environments.

Geobacter’s hairlike pili are extremely fine, only 3 to 5 nanometers in diameter or about 20,000 times finer than a human hair, and more than a thousand times longer than they are wide. Nevertheless, they are strong. Nicknamed nanowires for their role in moving electrons, pili are the secret to this particular microbe’s ability to produce electric current from organic waste and sediment. Geobacter’s pili seem critical for forming the biofilm which aids transfer of the electron products to iron in soil and sediment. In nature, bacteria colonies form gluey biofilms to anchor to a surface such as a tooth or an underwater rock, providing a living environment near a food source.

The Geobacter biofilm’s “fortuitous” electron-transferring skill, the product of natural selection, suggested a pathway to Lovley¯a way he might use selective pressure to increase its capacity to produce power. He and colleagues grew Geobacter as usual on a graphite electrode, providing acetate as food and allowing a colony to form the biologically active slime, or biofilm where electron transfer takes place across the nanowires. But for this new experiment they added a tiny, 400-millivolt “pushback” current in the electrode that forced Geobacter to press harder to get rid of its electrons.

The result of providing a more challenging environment, within five short months, Lovley notes, was evolution of a beefed-up microorganism that can press at least eight times more electric current across the electrode than the original strain. “I’m really happy with this outcome,” the microbiologist notes. “It’s exceptionally fast feedback to us and a very satisfying result.” He adds, “I’m still a little amazed that they make electricity, but I’m happy to be exploring how to harness that ability. I’m sure there’ll be applications developed in the future that we can’t even envision right now.”

Lovley’s first experiments with the anaerobic microbe, Geobacter, which he and colleagues discovered in sediment under the Potomac River in 1987, explored its use in decontaminating soil due to its ability to respire iron and other metals the way we breathe oxygen. Geobacter showed promise for a variety of bioremediation tasks, but the microbiologists further discovered in 2002 that it could produce electricity from the organic matter found in soils, sediments and wastewater. This ability appeared to be a feature of the electrically conductive pili, discovered in 2005. Together, these discoveries have led to intense research on how to harness the microbes for producing electricity in microbial fuel cells.

Microbial fuel cells, which convert fuel to electricity without combustion, consist of an electrode known as an anode that accepts electrons from the microorganisms, and another electrode known as a cathode, which transfers electrons onto oxygen. Electrons flow between the anode and the cathode to provide the current that can be harvested to power electronic devices.

Several high-resolution photographs are available for this story at: http://www.geobacter.org/publications/19487117/

Derek Lovley | Newswise Science News
Further information:
http://www.umass.edu

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>