Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Microbe Strain Makes More Electricity, Faster

Researchers have coaxed Geobacter, the sediment-loving microbe who produce electric current from mud and wastewater, to evolve a new strain. It dramatically increases power output per cell, overall bulk power, and with a thinner biofilm, cuts the time to produce electricity on the electrode.

In their most recent experiments with Geobacter, the sediment-loving microbe whose hairlike filaments help it to produce electric current from mud and wastewater, Derek Lovley and colleagues at the University of Massachusetts Amherst supervised the evolution of a new strain that dramatically increases power output per cell and overall bulk power. It also works with a thinner biofilm than earlier strains, cutting the time to reach electricity-producing concentrations on the electrode.

“This new study shows that output can be boosted and it gives us good insights into what it will take to genetically select a higher-power organism.” The work, supported by the Office of Naval Research and the U.S. Department of Energy, is described in the August issue of the journal, Biosensors and Bioelectronics, now available online.

Findings open the door to improved microbial fuel cell architecture and should lead to “new applications that extend well beyond extracting electricity from mud,” Lovley says. In the new experiments, the UMass Amherst researchers adapted the microbe’s environment, which pushed it to adapt more efficient electric current transfer methods.

“In very short order we increased the power output by eight-fold, as a conservative estimate,” says Lovley. “With this, we’ve broken through the plateau in power production that’s been holding us back in recent years.” Now, planning can move forward to design microbial fuel cells that convert waste water and renewable biomass to electricity, treat a single home’s waste while producing localized power (especially attractive in developing countries), power mobile electronics, vehicles and implanted medical devices, and drive bioremediation of contaminated environments.

Geobacter’s hairlike pili are extremely fine, only 3 to 5 nanometers in diameter or about 20,000 times finer than a human hair, and more than a thousand times longer than they are wide. Nevertheless, they are strong. Nicknamed nanowires for their role in moving electrons, pili are the secret to this particular microbe’s ability to produce electric current from organic waste and sediment. Geobacter’s pili seem critical for forming the biofilm which aids transfer of the electron products to iron in soil and sediment. In nature, bacteria colonies form gluey biofilms to anchor to a surface such as a tooth or an underwater rock, providing a living environment near a food source.

The Geobacter biofilm’s “fortuitous” electron-transferring skill, the product of natural selection, suggested a pathway to Lovley¯a way he might use selective pressure to increase its capacity to produce power. He and colleagues grew Geobacter as usual on a graphite electrode, providing acetate as food and allowing a colony to form the biologically active slime, or biofilm where electron transfer takes place across the nanowires. But for this new experiment they added a tiny, 400-millivolt “pushback” current in the electrode that forced Geobacter to press harder to get rid of its electrons.

The result of providing a more challenging environment, within five short months, Lovley notes, was evolution of a beefed-up microorganism that can press at least eight times more electric current across the electrode than the original strain. “I’m really happy with this outcome,” the microbiologist notes. “It’s exceptionally fast feedback to us and a very satisfying result.” He adds, “I’m still a little amazed that they make electricity, but I’m happy to be exploring how to harness that ability. I’m sure there’ll be applications developed in the future that we can’t even envision right now.”

Lovley’s first experiments with the anaerobic microbe, Geobacter, which he and colleagues discovered in sediment under the Potomac River in 1987, explored its use in decontaminating soil due to its ability to respire iron and other metals the way we breathe oxygen. Geobacter showed promise for a variety of bioremediation tasks, but the microbiologists further discovered in 2002 that it could produce electricity from the organic matter found in soils, sediments and wastewater. This ability appeared to be a feature of the electrically conductive pili, discovered in 2005. Together, these discoveries have led to intense research on how to harness the microbes for producing electricity in microbial fuel cells.

Microbial fuel cells, which convert fuel to electricity without combustion, consist of an electrode known as an anode that accepts electrons from the microorganisms, and another electrode known as a cathode, which transfers electrons onto oxygen. Electrons flow between the anode and the cathode to provide the current that can be harvested to power electronic devices.

Several high-resolution photographs are available for this story at:

Derek Lovley | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>