Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating light at will

02.08.2011
Electrical engineers at Duke University have developed a material that allows them to manipulate light in much the same way that electronics manipulate flowing electrons.

The researchers say the results of their latest proof-of-concept experiments could lead to the replacement of electrical components with those based on optical technologies. Light-based devices would enable faster and more efficient transmission of information, much in the same way that replacing wires with optical fibers revolutionized the telecommunications industry.

The breakthrough revolves around a novel man-made structure known as a metamaterial. These exotic composite materials are not so much a single substance, but an entire structure that can be engineered to exhibit properties not readily found in nature. The structure used in these experiments resembles a miniature set of tan Venetian blinds.

When light passes through a material, even though it may be reflected, refracted or weakened along the way, it is still the same light coming out. This is known as linearity.

"For highly intense light, however, certain 'nonlinear' materials violate this rule of thumb, converting the incoming energy into a brand new beam of light at twice the original frequency, called the second-harmonic," said Alec Rose, graduate student in the laboratory of David R. Smith, William Bevan Professor of electrical and computer engineering at Duke's Pratt School of Engineering.

As an example, he cited the crystal in some laser pointers, which transforms the normal laser light into another beam of a different color, which would be the second-harmonic. Though they contain nonlinear properties, designing such devices requires a great deal of time and effort to be able to control the direction of the second harmonic, and natural nonlinear materials are quite weak, Rose said.

"Normally, this frequency-doubling process occurs over a distance of many wavelengths, and the direction in which the second-harmonic travels is strictly determined by whatever nonlinear material is used," Rose said. "Using the novel metamaterials at microwave frequencies, we were able to fabricate a nonlinear device capable of 'steering' this second-harmonic. The device simultaneously doubled and reflected incoming waves in the direction we wanted."

The research results were published online in the journal Physical Review Letters. It was supported by the Air Force Office of Scientific Research. Smith's team was the first to demonstrate that similar metamaterials could act as a cloaking device in 2006 and a next generation lens in 2009.

"This magnitude of control over light is unique to nonlinear metamaterials, and can have important consequences in all-optical communications, where the ability to manipulate light is crucial," Rose said.

The device, which measures six inches by eight inches and about an inch high, is made of individual pieces of the same fiberglass material used in circuit boards arranged in parallel rows. Each piece is etched with copper circles. Each copper circle has a tiny gap that is spanned by a diode, which when excited by light passing through it, breaks its natural symmetry, creating non-linearity.

"The trend in telecommunications is definitely optical," Rose said. "To be able to control light in the same manner that electronics control currents will be an important step in transforming telecommunications technologies."

Duke graduate student Da Huang was also a member of the team.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>