Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating light at will

02.08.2011
Electrical engineers at Duke University have developed a material that allows them to manipulate light in much the same way that electronics manipulate flowing electrons.

The researchers say the results of their latest proof-of-concept experiments could lead to the replacement of electrical components with those based on optical technologies. Light-based devices would enable faster and more efficient transmission of information, much in the same way that replacing wires with optical fibers revolutionized the telecommunications industry.

The breakthrough revolves around a novel man-made structure known as a metamaterial. These exotic composite materials are not so much a single substance, but an entire structure that can be engineered to exhibit properties not readily found in nature. The structure used in these experiments resembles a miniature set of tan Venetian blinds.

When light passes through a material, even though it may be reflected, refracted or weakened along the way, it is still the same light coming out. This is known as linearity.

"For highly intense light, however, certain 'nonlinear' materials violate this rule of thumb, converting the incoming energy into a brand new beam of light at twice the original frequency, called the second-harmonic," said Alec Rose, graduate student in the laboratory of David R. Smith, William Bevan Professor of electrical and computer engineering at Duke's Pratt School of Engineering.

As an example, he cited the crystal in some laser pointers, which transforms the normal laser light into another beam of a different color, which would be the second-harmonic. Though they contain nonlinear properties, designing such devices requires a great deal of time and effort to be able to control the direction of the second harmonic, and natural nonlinear materials are quite weak, Rose said.

"Normally, this frequency-doubling process occurs over a distance of many wavelengths, and the direction in which the second-harmonic travels is strictly determined by whatever nonlinear material is used," Rose said. "Using the novel metamaterials at microwave frequencies, we were able to fabricate a nonlinear device capable of 'steering' this second-harmonic. The device simultaneously doubled and reflected incoming waves in the direction we wanted."

The research results were published online in the journal Physical Review Letters. It was supported by the Air Force Office of Scientific Research. Smith's team was the first to demonstrate that similar metamaterials could act as a cloaking device in 2006 and a next generation lens in 2009.

"This magnitude of control over light is unique to nonlinear metamaterials, and can have important consequences in all-optical communications, where the ability to manipulate light is crucial," Rose said.

The device, which measures six inches by eight inches and about an inch high, is made of individual pieces of the same fiberglass material used in circuit boards arranged in parallel rows. Each piece is etched with copper circles. Each copper circle has a tiny gap that is spanned by a diode, which when excited by light passing through it, breaks its natural symmetry, creating non-linearity.

"The trend in telecommunications is definitely optical," Rose said. "To be able to control light in the same manner that electronics control currents will be an important step in transforming telecommunications technologies."

Duke graduate student Da Huang was also a member of the team.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>