Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaysian and Taiwanese researchers make major advances in dye sensitized solar cells

23.04.2014

Two groups of researchers have recently advanced the field of solar cells with a cheaper and efficient replacement for platinum and better synthesis of zinc oxide.

Working on dye-sensitized solar cells - researchers from University Malaya (UM) and National Tsing Hua University (NTHU) have achieved an efficiency of 1.12 %, at a fraction of the cost compared to those used by platinum devices. 


A set of figures illustrating the effect of applied voltage during electrolysis on the spacing between nanosheets (bottom) and the corresponding variations in electrical properties (top)

This work has been accepted for publication in the journal, Nanoscale published by the Royal Society of Chemistry and has been selected for the front cover of the issue.

The study carried out in Taiwan took on the challenge of making the technology behind dye-sensitized solar cells more affordable by replacing the costly platinum counter-electrodes with bismuth telluride (Bi2Te3) nanosheet arrays.

Using a novel electrolysis process, the group managed to closely manipulate the spacing between individual nanosheets and hence control the thermal and electrical conductivity parameters to achieve the high efficiency of 1.12%, which is comparable to platinum devices, but at only at a fraction of the cost.

The research was led by Prof. Yu-Lun Chueh of the Nanoscience & Nanodevices Laboratory, NTHU, and Alireza Yaghoubi, UM HIR Young Scientist. “In light of the recent report by the United Nations about the irreversible effects of fossil fuels on climate change and as we gradually run out of economically recoverable oil reserves, we think it is necessary to look for a sustainable, yet practical source of energy” Yaghoubi stated. 

Meanwhile at University Malaya, Dr. Wee Siong Chiu and colleagues were working on controlling the secondary nucleation and self-assembly in zinc oxide (ZnO), a material which is currently being scrutinized for its potential applications in dye-sensitized solar cells as well as photocatalytic reactions to generate clean electricity by splitting water under sunlight. 

In this work, Dr. Chiu and Alireza Yaghoubi demonstrated a new route for synthesis of various zinc oxide nanostructures using the lipophilic interactions between a novel precursor and a number of fatty acids. They are hoping to further use this method to increase the efficiency of photocatalysts in the visible regime where most of the sunlight energy lies. 

According to the researchers, if this approach is successful, generating electricity is as easy as pouring some bioinert nanomaterials into a lake and fusing the split oxygen and hydrogen atoms back into water in a photoelectrochemical cell. 

This paper will be on the front cover of CrysEngComm, also published by the Royal Society of Chemistry.

MORE INFORMATION 

The collaboration between UM and NTHU was set in motion after a visit by a delegate of distinguished scientists from NTHU to UM. The collaboration is aimed at tackling one of the most important challenges humankind is about to face in the coming decades. 

Renewable energies have been among trending research topics in recent years, however many of the related technologies are still in their infancy and are either very expensive or not sufficiently efficient for large-scale applications.

“This is only the beginning of a long-lasting collaboration between us”, Prof. Chueh remarked.

Yaghoubi and Chueh are at the moment working as a part of an international collaboration with universities in France and USA to find a viable substitute for two-dimensional materials such as graphene which have been difficult to use in large-scale industrial applications.

Journal information

1 Hung-Wei Tsai, Tsang-Hsiu Wang, Tsung-Cheng Chan, Pei-Ju Chen, Chih-Chun Chung, Chien-Neng Liao, Alireza Yaghoubi, Eric Wei-Guang Diau, and Yu-Lun Chueh. "Fabrication of Large Scale Single Crystal Bismuth Telluride (Bi2Te3) Nanosheet Arrays by Single Step Electrolysis Process." Nanoscale (2014). DOI: 10.1039/C4NR00184B

2 W.S. Chiu, A. Yaghoubi, M.Y. Chia, N.H. Khanis, S.A. Rahman, P.S. Khiew, and Y.L. Chueh. "Self-assembly and secondary nucleation in ZnO nanostructures derived from a lipophilic precursor." CrystEngComm (2014). DOI: 10.1039/C4CE00442F

Funding information

Dr. Chiu and Alireza Yaghoubi's work is funded by the HIR Grant UM.C/625/1/HIR/079

University of Malaya | Research SEA News
Further information:
http://umresearch.um.edu.my/
http://www.researchsea.com

Further reports about: DOI Taiwanese ZnO acids conductivity dye electricity electrolysis nanostructures nucleation platinum split sunlight zinc

More articles from Power and Electrical Engineering:

nachricht Ultra-flat circuits will have unique properties
26.07.2016 | Rice University

nachricht Did you know that UV light helps to ensure safe bathing during the summer months?
25.07.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>