Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaysian and Taiwanese researchers make major advances in dye sensitized solar cells

23.04.2014

Two groups of researchers have recently advanced the field of solar cells with a cheaper and efficient replacement for platinum and better synthesis of zinc oxide.

Working on dye-sensitized solar cells - researchers from University Malaya (UM) and National Tsing Hua University (NTHU) have achieved an efficiency of 1.12 %, at a fraction of the cost compared to those used by platinum devices. 


A set of figures illustrating the effect of applied voltage during electrolysis on the spacing between nanosheets (bottom) and the corresponding variations in electrical properties (top)

This work has been accepted for publication in the journal, Nanoscale published by the Royal Society of Chemistry and has been selected for the front cover of the issue.

The study carried out in Taiwan took on the challenge of making the technology behind dye-sensitized solar cells more affordable by replacing the costly platinum counter-electrodes with bismuth telluride (Bi2Te3) nanosheet arrays.

Using a novel electrolysis process, the group managed to closely manipulate the spacing between individual nanosheets and hence control the thermal and electrical conductivity parameters to achieve the high efficiency of 1.12%, which is comparable to platinum devices, but at only at a fraction of the cost.

The research was led by Prof. Yu-Lun Chueh of the Nanoscience & Nanodevices Laboratory, NTHU, and Alireza Yaghoubi, UM HIR Young Scientist. “In light of the recent report by the United Nations about the irreversible effects of fossil fuels on climate change and as we gradually run out of economically recoverable oil reserves, we think it is necessary to look for a sustainable, yet practical source of energy” Yaghoubi stated. 

Meanwhile at University Malaya, Dr. Wee Siong Chiu and colleagues were working on controlling the secondary nucleation and self-assembly in zinc oxide (ZnO), a material which is currently being scrutinized for its potential applications in dye-sensitized solar cells as well as photocatalytic reactions to generate clean electricity by splitting water under sunlight. 

In this work, Dr. Chiu and Alireza Yaghoubi demonstrated a new route for synthesis of various zinc oxide nanostructures using the lipophilic interactions between a novel precursor and a number of fatty acids. They are hoping to further use this method to increase the efficiency of photocatalysts in the visible regime where most of the sunlight energy lies. 

According to the researchers, if this approach is successful, generating electricity is as easy as pouring some bioinert nanomaterials into a lake and fusing the split oxygen and hydrogen atoms back into water in a photoelectrochemical cell. 

This paper will be on the front cover of CrysEngComm, also published by the Royal Society of Chemistry.

MORE INFORMATION 

The collaboration between UM and NTHU was set in motion after a visit by a delegate of distinguished scientists from NTHU to UM. The collaboration is aimed at tackling one of the most important challenges humankind is about to face in the coming decades. 

Renewable energies have been among trending research topics in recent years, however many of the related technologies are still in their infancy and are either very expensive or not sufficiently efficient for large-scale applications.

“This is only the beginning of a long-lasting collaboration between us”, Prof. Chueh remarked.

Yaghoubi and Chueh are at the moment working as a part of an international collaboration with universities in France and USA to find a viable substitute for two-dimensional materials such as graphene which have been difficult to use in large-scale industrial applications.

Journal information

1 Hung-Wei Tsai, Tsang-Hsiu Wang, Tsung-Cheng Chan, Pei-Ju Chen, Chih-Chun Chung, Chien-Neng Liao, Alireza Yaghoubi, Eric Wei-Guang Diau, and Yu-Lun Chueh. "Fabrication of Large Scale Single Crystal Bismuth Telluride (Bi2Te3) Nanosheet Arrays by Single Step Electrolysis Process." Nanoscale (2014). DOI: 10.1039/C4NR00184B

2 W.S. Chiu, A. Yaghoubi, M.Y. Chia, N.H. Khanis, S.A. Rahman, P.S. Khiew, and Y.L. Chueh. "Self-assembly and secondary nucleation in ZnO nanostructures derived from a lipophilic precursor." CrystEngComm (2014). DOI: 10.1039/C4CE00442F

Funding information

Dr. Chiu and Alireza Yaghoubi's work is funded by the HIR Grant UM.C/625/1/HIR/079

University of Malaya | Research SEA News
Further information:
http://umresearch.um.edu.my/
http://www.researchsea.com

Further reports about: DOI Taiwanese ZnO acids conductivity dye electricity electrolysis nanostructures nucleation platinum split sunlight zinc

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>