Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaysian and Taiwanese researchers make major advances in dye sensitized solar cells

23.04.2014

Two groups of researchers have recently advanced the field of solar cells with a cheaper and efficient replacement for platinum and better synthesis of zinc oxide.

Working on dye-sensitized solar cells - researchers from University Malaya (UM) and National Tsing Hua University (NTHU) have achieved an efficiency of 1.12 %, at a fraction of the cost compared to those used by platinum devices. 


A set of figures illustrating the effect of applied voltage during electrolysis on the spacing between nanosheets (bottom) and the corresponding variations in electrical properties (top)

This work has been accepted for publication in the journal, Nanoscale published by the Royal Society of Chemistry and has been selected for the front cover of the issue.

The study carried out in Taiwan took on the challenge of making the technology behind dye-sensitized solar cells more affordable by replacing the costly platinum counter-electrodes with bismuth telluride (Bi2Te3) nanosheet arrays.

Using a novel electrolysis process, the group managed to closely manipulate the spacing between individual nanosheets and hence control the thermal and electrical conductivity parameters to achieve the high efficiency of 1.12%, which is comparable to platinum devices, but at only at a fraction of the cost.

The research was led by Prof. Yu-Lun Chueh of the Nanoscience & Nanodevices Laboratory, NTHU, and Alireza Yaghoubi, UM HIR Young Scientist. “In light of the recent report by the United Nations about the irreversible effects of fossil fuels on climate change and as we gradually run out of economically recoverable oil reserves, we think it is necessary to look for a sustainable, yet practical source of energy” Yaghoubi stated. 

Meanwhile at University Malaya, Dr. Wee Siong Chiu and colleagues were working on controlling the secondary nucleation and self-assembly in zinc oxide (ZnO), a material which is currently being scrutinized for its potential applications in dye-sensitized solar cells as well as photocatalytic reactions to generate clean electricity by splitting water under sunlight. 

In this work, Dr. Chiu and Alireza Yaghoubi demonstrated a new route for synthesis of various zinc oxide nanostructures using the lipophilic interactions between a novel precursor and a number of fatty acids. They are hoping to further use this method to increase the efficiency of photocatalysts in the visible regime where most of the sunlight energy lies. 

According to the researchers, if this approach is successful, generating electricity is as easy as pouring some bioinert nanomaterials into a lake and fusing the split oxygen and hydrogen atoms back into water in a photoelectrochemical cell. 

This paper will be on the front cover of CrysEngComm, also published by the Royal Society of Chemistry.

MORE INFORMATION 

The collaboration between UM and NTHU was set in motion after a visit by a delegate of distinguished scientists from NTHU to UM. The collaboration is aimed at tackling one of the most important challenges humankind is about to face in the coming decades. 

Renewable energies have been among trending research topics in recent years, however many of the related technologies are still in their infancy and are either very expensive or not sufficiently efficient for large-scale applications.

“This is only the beginning of a long-lasting collaboration between us”, Prof. Chueh remarked.

Yaghoubi and Chueh are at the moment working as a part of an international collaboration with universities in France and USA to find a viable substitute for two-dimensional materials such as graphene which have been difficult to use in large-scale industrial applications.

Journal information

1 Hung-Wei Tsai, Tsang-Hsiu Wang, Tsung-Cheng Chan, Pei-Ju Chen, Chih-Chun Chung, Chien-Neng Liao, Alireza Yaghoubi, Eric Wei-Guang Diau, and Yu-Lun Chueh. "Fabrication of Large Scale Single Crystal Bismuth Telluride (Bi2Te3) Nanosheet Arrays by Single Step Electrolysis Process." Nanoscale (2014). DOI: 10.1039/C4NR00184B

2 W.S. Chiu, A. Yaghoubi, M.Y. Chia, N.H. Khanis, S.A. Rahman, P.S. Khiew, and Y.L. Chueh. "Self-assembly and secondary nucleation in ZnO nanostructures derived from a lipophilic precursor." CrystEngComm (2014). DOI: 10.1039/C4CE00442F

Funding information

Dr. Chiu and Alireza Yaghoubi's work is funded by the HIR Grant UM.C/625/1/HIR/079

University of Malaya | Research SEA News
Further information:
http://umresearch.um.edu.my/
http://www.researchsea.com

Further reports about: DOI Taiwanese ZnO acids conductivity dye electricity electrolysis nanostructures nucleation platinum split sunlight zinc

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>