Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LEDs on Silicon Can Reduce Production Costs

21.05.2012
A new manufacturing technology is expected to greatly reduce the cost of light-emitting diodes (LEDs) in the future.

For the first time ever, researchers at the Siemens subsidiary Osram Opto Semiconductors were able to successfully produce gallium nitride LED chips on a silicon substrate instead of the much more expensive sapphire backing.



Silicon is a standard material in the semiconductor industry and is therefore an inexpensive and easily obtainable alternative. This development goes a long way toward making it possible for Osram to produce LED components at a much lower cost while maintaining the same level of quality and performance.

LEDs are an efficient and, above all, energy-conserving alternative to traditional types of room lighting. However, until now the manufacturing costs for LEDs have been higher than those of other more established types of lighting, so they have not been widely adopted for everyday use.

Using this new procedure, it should be possible to use large sheets of silicon for LED production, which would result in a major improvement of manufacturing efficiency. Osram has already succeeded in producing high-performance LED chips on a 150-millimeter (six-inch) wafer. Theoretically, one such wafer would be sufficient to produce 17,000 LED chips of one square millimeter each.

Researchers are already working on the adjustment of the production process to handle eight-inch wafers. This would increase the number of chips per substrate, thereby further reducing the cost of production. The first commercially available LED products using silicon-based chips are expected to be on the market in about two years.

These new thin-film-based LEDs are still only at the pilot stage and will have to be tested under real-world conditions. The blue and white silicon-based prototypes display performance characteristics that are on a par with the LEDs available on the market today. A blue chip measuring one square millimeter in a standard housing delivers a record brightness of 634 milliwatts at 3.15 volts. That's an efficiency rate of 58 percent. Those are excellent results for a chip of that size at a current of 350 milliamperes.

The development of these new manufacturing technologies is based on the specialized knowledge regarding the growth of artificial crystals that has been gathered by the researchers at Osram Opto Semiconductors.

The major breakthrough was a special epitaxy process which made it possible to slice off particularly stable silicon films without the cracking that has often been a problem in the past. At the same time, these silicon films are also comparable to sapphire backing with regard to the LEDs' brightness and stability.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>