Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LEDs on Silicon Can Reduce Production Costs

21.05.2012
A new manufacturing technology is expected to greatly reduce the cost of light-emitting diodes (LEDs) in the future.

For the first time ever, researchers at the Siemens subsidiary Osram Opto Semiconductors were able to successfully produce gallium nitride LED chips on a silicon substrate instead of the much more expensive sapphire backing.



Silicon is a standard material in the semiconductor industry and is therefore an inexpensive and easily obtainable alternative. This development goes a long way toward making it possible for Osram to produce LED components at a much lower cost while maintaining the same level of quality and performance.

LEDs are an efficient and, above all, energy-conserving alternative to traditional types of room lighting. However, until now the manufacturing costs for LEDs have been higher than those of other more established types of lighting, so they have not been widely adopted for everyday use.

Using this new procedure, it should be possible to use large sheets of silicon for LED production, which would result in a major improvement of manufacturing efficiency. Osram has already succeeded in producing high-performance LED chips on a 150-millimeter (six-inch) wafer. Theoretically, one such wafer would be sufficient to produce 17,000 LED chips of one square millimeter each.

Researchers are already working on the adjustment of the production process to handle eight-inch wafers. This would increase the number of chips per substrate, thereby further reducing the cost of production. The first commercially available LED products using silicon-based chips are expected to be on the market in about two years.

These new thin-film-based LEDs are still only at the pilot stage and will have to be tested under real-world conditions. The blue and white silicon-based prototypes display performance characteristics that are on a par with the LEDs available on the market today. A blue chip measuring one square millimeter in a standard housing delivers a record brightness of 634 milliwatts at 3.15 volts. That's an efficiency rate of 58 percent. Those are excellent results for a chip of that size at a current of 350 milliamperes.

The development of these new manufacturing technologies is based on the specialized knowledge regarding the growth of artificial crystals that has been gathered by the researchers at Osram Opto Semiconductors.

The major breakthrough was a special epitaxy process which made it possible to slice off particularly stable silicon films without the cracking that has often been a problem in the past. At the same time, these silicon films are also comparable to sapphire backing with regard to the LEDs' brightness and stability.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>