Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LEDs on Silicon Can Reduce Production Costs

21.05.2012
A new manufacturing technology is expected to greatly reduce the cost of light-emitting diodes (LEDs) in the future.

For the first time ever, researchers at the Siemens subsidiary Osram Opto Semiconductors were able to successfully produce gallium nitride LED chips on a silicon substrate instead of the much more expensive sapphire backing.



Silicon is a standard material in the semiconductor industry and is therefore an inexpensive and easily obtainable alternative. This development goes a long way toward making it possible for Osram to produce LED components at a much lower cost while maintaining the same level of quality and performance.

LEDs are an efficient and, above all, energy-conserving alternative to traditional types of room lighting. However, until now the manufacturing costs for LEDs have been higher than those of other more established types of lighting, so they have not been widely adopted for everyday use.

Using this new procedure, it should be possible to use large sheets of silicon for LED production, which would result in a major improvement of manufacturing efficiency. Osram has already succeeded in producing high-performance LED chips on a 150-millimeter (six-inch) wafer. Theoretically, one such wafer would be sufficient to produce 17,000 LED chips of one square millimeter each.

Researchers are already working on the adjustment of the production process to handle eight-inch wafers. This would increase the number of chips per substrate, thereby further reducing the cost of production. The first commercially available LED products using silicon-based chips are expected to be on the market in about two years.

These new thin-film-based LEDs are still only at the pilot stage and will have to be tested under real-world conditions. The blue and white silicon-based prototypes display performance characteristics that are on a par with the LEDs available on the market today. A blue chip measuring one square millimeter in a standard housing delivers a record brightness of 634 milliwatts at 3.15 volts. That's an efficiency rate of 58 percent. Those are excellent results for a chip of that size at a current of 350 milliamperes.

The development of these new manufacturing technologies is based on the specialized knowledge regarding the growth of artificial crystals that has been gathered by the researchers at Osram Opto Semiconductors.

The major breakthrough was a special epitaxy process which made it possible to slice off particularly stable silicon films without the cracking that has often been a problem in the past. At the same time, these silicon films are also comparable to sapphire backing with regard to the LEDs' brightness and stability.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>