Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lawrence Livermore researchers find wind power not enough to affect global climate

11.09.2012
Though there is enough power in the earth's winds to be a primary source of near-zero emission electric power for the world, large-scale high altitude wind power generation is unlikely to substantially affect climate.

That is the conclusion of a Lawrence Livermore National Laboratory climate scientist and collaborators who studied the geophysical limits to global wind power in a paper appearing in the Sept. 9 edition of the journal, Nature Climate Change.

"The future of wind energy is likely to be determined by economic, political and technical constraints rather than geophysical limits," said Kate Marvel, lead author of the paper and a scientist in the Laboratory's Program for Climate Model Diagnosis and Intercomparison.

Airborne turbines that convert steadier and faster high-altitude winds into energy could generate even more power than ground- and ocean-based units. The study examined the limits of the amount of power that could be harvested from winds, as well as the effects high-altitude wind power could have on the climate as a whole.

Turbines create drag, or resistance, which removes momentum from the winds and tends to slow them. As the number of wind turbines increases, the amount of energy that is generated increases. But at some point, the winds would be slowed so much that adding more turbines will not generate more electricity. This study focused on finding the point at which energy generation is highest.

Using a climate model, Marvel, along with Ben Kravitz and Ken Caldeira of the Carnegie Institution Department of Global Ecology, estimated the amount of power than can be produced from both near-surface and high-altitude winds.

The group found that wind turbines placed on the earth's surface could extract kinetic energy at a rate of at least 400 terawatts, while high-altitude wind power could extract more than 1800 terawatts. Current total global power demand is about 18 terawatts.

At maximum levels of power generation, there would be substantial climate effects from wind harvesting. But the study found that the climate effects of extracting wind energy at the level of current global demand would be small, as long as the turbines were spread out and not clustered in just a few regions. At the level of global energy demand, wind turbines might affect surface temperatures by about 0.2 degrees Fahrenheit and affect precipitation by about 1 percent. Overall, the environmental impacts would not be substantial.

More Information

"Power generation is blowing in the wind," LLNL news release, Jan. 17, 2012.

"Lawrence Livermore ramps up wind energy research," LLNL news release, Dec. 14, 2011

"In the wake of the wind," LLNL news release, April 26, 2011

"Extracting more power from wind," Science & Technology Review, April/May 2010


Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov
http://www.llnl.gov/news/newsreleases/2012/Sep/NR-12-09-03.html

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>