Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kansas State University engineer builds paperlike battery electrode with glass-ceramic

01.04.2016

A paperlike battery electrode developed by a Kansas State University engineer may improve tools for space exploration or unmanned aerial vehicles.

Gurpreet Singh, associate professor of mechanical and nuclear engineering, and his research team created the battery electrode using silicon oxycarbide-glass and graphene.


Gurpreet Singh, Kansas State University associate professor of mechanical and nuclear engineering, and his research team have developed a paperlike battery electrode using silicon oxycarbide glass and graphene.

Credit: Kansas State University

The battery electrode has all the right characteristics. It is more than 10 percent lighter than other battery electrodes. It has close to 100 percent cycling efficiency for more than 1000 charge discharge cycles. It is made of low-cost materials that are byproducts of the silicone industry. And it functions at temperatures as low as minus 15 degrees C, which gives it numerous aerial and space applications.

The research appears in Nature Communications article "Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries."

Singh's research team has been exploring new material combinations for batteries and electrode design. It has been difficult to incorporate graphene and silicon into practical batteries because of challenges that arise at high mass loadings -- such as low capacity per volume, poor cycling efficiency and chemical-mechanical instability.

Singh's team has addressed these challenges by manufacturing a self-supporting and ready-to-go electrode that consists of a glassy ceramic called silicon oxycarbide sandwiched between large platelets of chemically modified graphene, or CMG. The electrode has a high capacity of approximately 600 miliampere-hours per gram -- 400 miliampere-hours per cubic centimeter -- that is derived from silicon oxycarbide. The paperlike design is made of 20 percent chemically modified graphene platelets.

"The paperlike design is markedly different from the electrodes used in present day batteries because it eliminates the metal foil support and polymeric glue -- both of which do not contribute toward capacity of the battery," Singh said.

The design that Singh's team developed saved approximately 10 percent in total weight of the cell. The result is a lightweight electrode capable of storing lithium-ion and electrons with near 100 percent cycling efficiency for more than 1000 charge discharge cycles. The most important aspect is that the material is able to demonstrate such performance at practical levels, Singh said.

The paper electrode cells also are able to deliver a capacity of 200 miliampere-hour per gram even when kept at minus 15 degrees C for about a month, which is quite remarkable considering that most batteries fail to perform at such low temperatures, Singh said.

"This suggests that rechargeable batteries from silicon-glass and graphene electrodes may also be suitable for unmanned aerial vehicles flying at high altitudes, or maybe even space applications," Singh said.

The silicon oxycarbide material itself is quite special, Singh said. It is prepared by heating a liquid resin to the point where it decomposes and transforms into sharp glasslike particles. The silicon, carbon and oxygen atoms get rearranged into random 3-D structure and any excess carbon precipitates out into cellular regions. Such an open 3-D structure creates large sites for reversible lithium storage and smooth channels for lithium-ion transportation. This structure and mechanism of lithium storage is different than crystalline silicon electrodes. Silicon oxycarbide electrodes are expected to be low cost because the raw material -- liquid resin -- is a byproduct of the silicone industry.

Moving forward, Singh and his team want to address practical challenges. Singh's goal is to produce this electrode material at even larger dimensions. For example, present-day pencil-cell batteries use graphite-coated copper foil electrodes that are more than one foot in length. The team also would like to perform mechanical bending tests to see how they affect performance parameters.

"Ultimately, we would like to work with industry to explore production of lithium-ion battery full-cells," Singh said. "Silicon oxycarbide can also be prepared by 3-D printing, which is another area of interest to us."

###

The research received funding from the National Science Foundation, including Singh's $500,000 CAREER award.

Other Kansas State University researchers involved include Lamuel David, 2015 doctoral graduate in mechanical engineering, Oak Ridge, Tennessee; Romil Bhandavat, 2013 doctoral graduate in mechanical engineering, Hillsboro, Oregon; and Uriel Barrera, 2015 bachelors graduate in mechanical engineering, Olathe.

Media Contact

Gurpreet Singh
gurpreet@k-state.edu
785-532-7085

 @KStateNews​

http://www.k-state.edu 

Gurpreet Singh | EurekAlert!

Further reports about: 3-D 3-D structure Silicon batteries battery electrode electrodes graphene silicone structure

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>