Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging and treatment in one light switch

09.10.2014

Targeted nanoparticles that combine imaging with two different therapies could attack cancer and other conditions

Nanosystems that are ‘theranostic’ — they combine both therapeutic and diagnostic functions — present an exciting new opportunity for delivering drugs to specific cells and identifying sites of disease.


Surface peptides (purple arrows) allow fluorescent nanoparticles to bind to a protein (green) on the target cells and be taken up into the cells. Light exposure prompts the nanoparticles to generate reactive oxygen species (ROS), kills the cells, and also liberates the drug doxorubicin (orange), which can then enter the cell nucleus.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Bin Liu of the A*STAR Institute of Materials Research and Engineering, and colleagues at the National University of Singapore, have created nanoparticles with two distinct anticancer functions and an imaging function, all stimulated on demand by a single light source1. The nanoparticles also include the cell-targeting property essential for treating and imaging in the correct locations.

The system is built around a polyethylene-glycol-based polymer that carries a small peptide component that allows it to bind preferentially to specific cell types. The polymer itself serves as a photosensitizer that can be stimulated by light to release reactive oxygen species (ROS). It also carries the chemotherapy drug doxorubicin in a prodrug form.

The natural fluorescence of the polymer assists with diagnosis and monitoring of therapy as it shows where nanoparticles have accumulated. The ROS generated by light stimulation have a direct ‘photodynamic’ therapeutic activity, which destroys the targeted cells. The ROS additionally break the link between the polymer and the doxorubicin. Thus, cancer cells can be subjected to a two-pronged attack from the ROS therapy and the chemotherapy drug that is released within them (see image).

“This is the first nanoplatform that can offer on-demand and imaging-guided photodynamic therapy and chemotherapy with triggered drug release through one light switch,” explains Liu, emphasizing the significance of the system.

The researchers demonstrated the power of their platform by applying it to a mixture of cultured cancer cells, some of which overexpressed a surface protein that could bind to the targeting peptide on the nanoparticles. Fluorescence imaging indicated that the nanoparticles were taken up by the target cells and that ROS and doxorubicin were released within these cells — all at significantly higher levels than in cells used as controls. The doxorubicin that was released in the cell cytoplasm readily entered the nucleus — its site of activity. Crucially, the combined therapy had a greater cytotoxic effect than any one therapy alone.

“The white light used in this work does not penetrate tissue sufficiently for in vivo applications,” Liu explains, “but we are now attempting to use near-infrared laser light to improve the tissue penetration and move toward on-demand cancer therapy.” She also suggests that with a few modifications, the system may be suitable for the diagnosis and treatment of other pathological processes including inflammation and HIV infection. 

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Reference

  1. Yuan, Y., Liu, J. & Liu, B. Conjugated-polyelectrolyte-based polyprodrug: Targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source. Angewandte Chemie International Edition 53, 7163–7168 (2014). | article

A*STAR Research | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7037
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>