Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Group Seeks Alternative Uses for Marcellus Shale Gas

06.07.2011
A new industry-led initiative to promote in-state utilization of Marcellus Shale natural gas by developing combined-heat-and-power (CHP) systems was announced Thursday at the Natural Gas Utilization Workshop at Penn State.

The Commonwealth Recycled Energy Economic Development Alliance (CREEDA) wants to jumpstart development of CHP systems, which recover waste heat from the generation of electricity and then use it for additional purposes including humidity control, cooling and heating and refrigeration.

“Marcellus Shale-natural gas powered CHP systems are more efficient than conventional electricity generation. They also are the lowest cost method for reducing carbon emissions because they have longer operating hours throughout the year than solar photovoltaic or wind-powered systems,” said Richard Sweetser, senior advisor with the U.S. Department of Energy’s Mid-Atlantic Clean Energy Application Center, who introduced the initiative.

Held June 29 and 30 at Penn State’s University Park campus, the workshop drew more than 130 invited participants from natural gas companies, state agencies, local and state government and University researchers who examined three high-value uses for the long-term supply of natural gas being produced in Pennsylvania’s Marcellus Shale.

Besides CHP systems, the use of natural gas in transportation and as a fuel and feedstock for local manufacturing were discussed, with input from international companies with experience in the economics of large scale energy projects, which the Marcellus has the potential to support.

The Marcellus, stretching from West Virginia through much of Pennsylvania and into New York, is thought to be the largest of about two dozen shale gas plays in the nation with as much as 500 trillion cubic feet of recoverable natural gas. The increasing supply of domestic natural gas represents a new fuel source for manufacturers, public transit systems, schools and hospitals.

Marcellus natural gas, for instance, has the potential to reinvigorate the petrochemical industry in eastern Pennsylvania and create new petrochemical production in western Pennsylvania, said Tom Richard, director of the Penn State Institutes of Energy and the Environment (PSIEE).

“This is not just about clean energy or about creating a demand for cheap energy but about economic development,” Richard said. “Industries that use natural gas as a feedstock produce eight times more jobs than those that simply burn the fuel.”

Energy-intensive businesses in Pennsylvania that could potentially use Marcellus Shale natural gas include furnaces and foundries, lumber and wood products and food processing.

Workshop participants also explored the advantages of transitioning from petroleum-based fuels to natural gas-based fuels for transportation, advantages which include reductions in emissions and lower costs on a gasoline-gallon equivalent.

But switching involves significant challenges, from the cost of converting engines to natural gas to the limited refueling infrastructure across both the state and the nation. Regulatory barriers to conversions and bi-fuel vehicles also must be overcome.

“We need high-profile demonstrations with vehicle deployment to show that we can make this work,” said Andre Boehman, professor of fuel science in the Penn State College of Earth and Mineral Sciences.

While as recently as 60 years ago, many of Pennsylvania’s state institutions were powered by CHP, one of the biggest challenges facing adoption of these systems is lack of awareness by potential users, policy makers and the public of the benefits, such as greater fuel efficiency and lower carbon emissions. The target users of CHP include schools, hospitals and industrial plants.

But the development of CHP systems also faces regulatory and investment barriers. CREEDA, an alliance of natural gas utilities, end users, developers, manufacturers and academic researchers, will be key in developing a statewide CHP energy policy that addresses those barriers, Sweetser said.

Developing new uses and new markets for Marcellus Shale natural gas will take concerted and sustained efforts to educate stakeholders from elected officials and public policy makers to citizens, said Tom Murphy, co-director of Penn State’s Marcellus Center for Outreach and Research (MCOR).

“We need to rally the public with good science and good information,” Murphy told the group. “We need to let the public know the process of getting energy to them, so they can decide their own energy future. And we need to let parents know that there will be good jobs available for their children through wise use of our natural resources.”

The workshop was co-hosted by the Ben Franklin Technology PArtners, Central and Northern Pennsylvania, and the U.S. Department of Energy Clean Energy Application Center and was organized by the Penn State Industrial Research Office, Marcellus Center for Outreach and Research, and the Penn State Institutes of Energy and the Environment.

For more information , contact John Siggins at Penn State’s Industrial Research Office, 814-865-2879, or johnsiggins@psu.edu. Tom Richard can be contacted at trichard@psu.edu. Richard Sweetser, Senior Advisor, U.S. Department of Energy, Mid-Atlantic Clean Energy Application Center can be reached at 703-707-0293 or

rsweetser@exergypartners.com.

John Siggins | Newswise Science News
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>