Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible nanoantenna arrays capture abundant solar energy

12.08.2008
Researchers have devised an inexpensive way to produce plastic sheets containing billions of nanoantennas that collect heat energy generated by the sun and other sources.

The technology, developed at the U.S. Department of Energy's Idaho National Laboratory, is the first step toward a solar energy collector that could be mass-produced on flexible materials.

While methods to convert the energy into usable electricity still need to be developed, the sheets could one day be manufactured as lightweight "skins" that power everything from hybrid cars to iPods with higher efficiency than traditional solar cells, say the researchers, who report their findings Aug. 13 at the American Society of Mechanical Engineers 2008 2nd International Conference on Energy Sustainability in Jacksonville, Fla. The nanoantennas also have the potential to act as cooling devices that draw waste heat from buildings or electronics without using electricity.

The nanoantennas target mid-infrared rays, which the Earth continuously radiates as heat after absorbing energy from the sun during the day. In contrast, traditional solar cells can only use visible light, rendering them idle after dark. Infrared radiation is an especially rich energy source because it also is generated by industrial processes such as coal-fired plants.

"Every process in our industrial world creates waste heat," says INL physicist Steven Novack. "It's energy that we just throw away." Novack led the research team, which included INL engineer Dale Kotter, W. Dennis Slafer of MicroContinuum, Inc. (Cambridge, Mass.) and Patrick Pinhero, now at the University of Missouri.

The nanoantennas are tiny gold squares or spirals set in a specially treated form of polyethylene, a material used in plastic bags. While others have successfully invented antennas that collect energy from lower-frequency regions of the electromagnetic spectrum, such as microwaves, infrared rays have proven more elusive. Part of the reason is that materials' properties change drastically at high-frequency wavelengths, Kotter says.

The researchers studied the behavior of various materials -- including gold, manganese and copper -- under infrared rays and used the resulting data to build computer models of nanoantennas. They found that with the right materials, shape and size, the simulated nanoantennas could harvest up to 92 percent of the energy at infrared wavelengths.

The team then created real-life prototypes to test their computer models. First, they used conventional production methods to etch a silicon wafer with the nanoantenna pattern. The silicon-based nanoantennas matched the computer simulations, absorbing more than 80 percent of the energy over the intended wavelength range. Next, they used a stamp-and-repeat process to emboss the nanoantennas on thin sheets of plastic. While the plastic prototype is still being tested, initial experiments suggest that it also captures energy at the expected infrared wavelengths.

The nanoantennas' ability to absorb infrared radiation makes them promising cooling devices. Since objects give off heat as infrared rays, the nanoantennas could collect those rays and re-emit the energy at harmless wavelengths. Such a system could cool down buildings and computers without the external power source required by air-conditioners and fans.

But more technological advances are needed before the nanoantennas can funnel their energy into usable electricity. The infrared rays create alternating currents in the nanoantennas that oscillate trillions of times per second, requiring a component called a rectifier to convert the alternating current to direct current. Today's rectifiers can't handle such high frequencies. "We need to design nanorectifiers that go with our nanoantennas," says Kotter, noting that a nanoscale rectifier would need to be about 1,000 times smaller than current commercial devices and will require new manufacturing methods. Another possibility is to develop electrical circuitry that might slow down the current to usable frequencies.

If these technical hurdles can be overcome, nanoantennas have the potential to be a cheaper, more efficient alternative to solar cells. Traditional solar cells rely on a chemical reaction that only works for up to 20 percent of the visible light they collect. Scientists have developed more complex solar cells with higher efficiency, but these models are too expensive for widespread use.

Nanoantennas, on the other hand, can be tweaked to pick up specific wavelengths depending on their shape and size. This flexibility would make it possible to create double-sided nanoantenna sheets that harvest energy from different parts of the sun's spectrum, Novack says. The team's stamp-and-repeat process could also be extended to large-scale roll-to-roll manufacturing techniques that could print the arrays at a rate of several yards per minute. The sheets could potentially cover building roofs or form the "skin" of consumer gadgets like cell phones and iPods, providing a continuous and inexpensive source of renewable energy.

Roberta Kwok | EurekAlert!
Further information:
http://www.inl.gov

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>