Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where Will Your Electrons Come From in 2030?

07.06.2011
In 2030, when you plug in your toaster, car or smart phone, where will the electricity come from? Or, will the electrons be there at all?

In the midst of Japan’s Fukushima nuclear disaster and as summer peak electricity demand looms in the northern hemisphere, world-leading energy scientists, future leaders and a group of experienced advisors are meeting in a unique think-tank experiment to envision how we can best prepare for a sustainable and safe global electricity future.

Launches June 5th (to 9th) at 1:00pm with an Address from the Governor General of Canada

Over four days of private working sessions, a panel consisting of a dozen scientific experts will share and debate their visions and technological expertise for the generation, distribution and storage of electricity looking towards the year 2030, overseen by seasoned mentors and a forum of next-generation leaders charting a course for implementation.

After half-a-century of promise, will fusion power finally deliver its first electricity? Can we safely rely on recycling and re-using nuclear fuel? Does our electricity future include paint-on photovoltaic panels that will split water to produce hydrogen gas for electricity production?

"Our goal is to tackle the energy challenges of this century from a scientific perspective first - and then factor in the economic, social and environmental implications, leaving politics until last,” says Wilson da Silva, moderator for the Equinox Summit: Energy 2030.

Over a dozen public events streamed live and on-demand
In tandem to the working sessions, the Equinox Summit aims to renew the energy dialogue in homes across the globe through a series of plenary sessions, topical lectures, and live panel debates on TVO’s The Agenda with Steve Paikin - all streamed live online and on-demand.

The Equinox Summit is the inaugural event of the Waterloo Global Science Initiative and is taking place at Perimeter Institute – a world-leading centre for theoretical physics.

“It’s a perfect venue for a future-looking energy summit,” says da Silva.

“Science has been the greatest single factor contributing to the health, prosperity and the advancement of our civilization. It is transformative, and that's the kind of power we need to tap in order to solve some of these really gargantuan challenges."

Cover the event on-line - here’s how:

• Watch over a dozen public events streaming live at http://wgsi.org/video

• Visit http://wgsi.org and sign up for our mailing list to receive daily top takeaways and story ideas.

• Use the hashtag #EquinoxSummit, or glimpse inside the strategy sessions with #EquinoxInside and a constant stream of photos at our wgsisummit Flickr stream

About WGSI
Founded in 2009, the non-profit Waterloo Global Science Initiative (WGSI) is a partnership between Perimeter Institute for Theoretical Physics and the University of Waterloo. WGSI aims to present highly focused international conferences that can advance dialogue and catalyze the long-range thinking necessary for scientific and technological solutions of the future.

Contact the Equinox Summit dedicated media newsroom for help arranging interviews with event participants, or for media enquiries. The media room is open June 5 to June 9.

Equinox Summit Media Newsroom Contact:
+1-519-569-7600 ext. 7506
newsroom@wgsi.org

| Newswise Science News
Further information:
http://www.wgsi.org

More articles from Power and Electrical Engineering:

nachricht EU research project DEMETER strives for innovation in enzyme production technology
30.05.2017 | Deutsches Biomasseforschungszentrum

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>