Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electromagnetic Phantom Exorcises Specters of Metal Detector Tests

29.12.2008
An electromagnetic phantom—a carbon and polymer mixture that simulates the human body—is being readied by the National Institute of Standards and Technology (NIST) for its upcoming role as a standardized performance test for walk-through metal detectors such as those used at airports.

In the comics, the Phantom is a masked crimefighter who protected the innocent from pirates, hijackers and other evildoers.

While not as dashing or exciting as its costumed namesake, this electromagnetic phantom—a carbon and polymer mixture that simulates the human body—is being readied by the National Institute of Standards and Technology (NIST) for its upcoming role as a different kind of protector. The NIST phantom serves as a mannequin in a standardized performance test for walk-through metal detectors or WTMDs such as those used at airports.

Metal detectors currently are evaluated by using “clean testers” (human subjects) who walk through the detector adorned with different types of innocuous metal objects, such as eyeglasses, belt buckles, watches, jewelry and coins, or by a piece of plywood pushed through the metal detector with the same items mounted on it. The disadvantage of using human subjects is that person-to-person variability in physical makeup and walking style and changes in a particular person’s gait or position at each pass makes standardization impossible. The second method is reproducible, but it can’t tell evaluators how a human body may impact the WTMD’s ability to discriminate between weapons and innocuous objects.

The solution for both problems came from the lab. With funding from the U.S. Department of Justice’s National Institute of Justice (NIJ), researchers in NIST’s Electromagnetics Division mixed a polymer with carbon black—a fine powder made almost entirely of elemental carbon—to yield a low-cost, easily molded compound that can mimic the average electrical conductivity of the human body (which includes blood, bone, fat, organs, muscle and skin). The material is shaped into brick-like blocks and then arranged on a non-conductive fiberglass frame in a form that simulates the mass and height of the average American adult male.

Once assembled, the NIST phantom is placed atop a low-friction nonmetallic cart and passed through a WTMD at a speed of 0.5 meters per second by a computer-controlled actuator. This speed was selected because it is a common walking pace for an adult male. Engineers in NIST’s Office of Law Enforcement Standards used the data from recent trials to design and support a reproducible process incorporating the phantom that will evaluate a walk-through metal detector’s ability to discriminate between threatening and non-threatening objects, such as the simulated eyeglasses or belt buckle. Plans call for the testing protocol to be considered in a future revision of the NIJ standard on metal detector performance.

Michael E. Newman | Newswise Science News
Further information:
http://www.nist.gov
http://patapsco.nist.gov/ImageGallery/details.cfm?imageid=611

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>