Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Anti-noise” silences wind turbines

13.08.2008
If wind turbines clatter and whistle too loudly, they are only permitted to operate under partial load to protect the local residents – but this also means a lower electricity output. An active damping system cancels out the noise by producing counter-vibrations.

If wind energy converters are located anywhere near a residential area, they must never become too noisy even in high winds. Most such power units try to go easy on their neighbors’ ears, but even the most careful design cannot prevent noise from arising at times: One source is the motion of the rotor blades, another is the cogwheels that produce vibrations in the gearbox.

These are relayed to the tower of the wind turbine, where they are emitted across a wide area – and what the residents hear is a humming noise. “People find these monotone sounds particularly unpleasant, rather like the whining of a mosquito,” says André Illgen, a research associate at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Dresden. If the wind energy converters hum too loudly, they are only permitted to operate under partial load: They rotate at a slower speed and generate less electricity.

In some cases the operators have to install additional damping systems or even replace the gearbox – an expensive business. However, the effectiveness of the passive damping systems used until now is somewhat limited: They only absorb noise at a certain frequency. Since modern wind energy converters adapt their rotational speed to the wind velocity in order to generate as much electricity as possible, however, the frequency of the humming sound also varies. Despite noise attenuation measures, humming noises penetrate the surrounding area.

In a joint project with colleagues from Schirmer GmbH, ESM Energie- and Schwingungstechnik Mitsch GmbH and the Dr. Ziegler engineering office, IWU researchers have developed an active damping system for wind turbines. The project is being funded by the “Deutsche Bundesstiftung Umwelt”. “These systems react autonomously to any change in frequency and damp the noise – regardless of how fast the wind generator is turning,” says Illgen.

The key components of this system are piezo actuators. These devices convert electric current into mechanical motion and generate “negative vibrations”, or a kind of anti-noise that precisely counteracts the vibrations of the wind turbine and cancels them out. The piezo actuators are mounted on the gearbox bearings that connect the gearbox to the pylon. But how do these piezo actuators adjust themselves to the respective noise frequencies? “We have integrated sensors into the system. They constantly measure the vibrations arising in the gearbox, and pass on the results to the actuator control system,” says Illgen.

The researchers have already developed a working model of the active vibration dampers, and their next step will be to perform field trials.

Monika Weiner | alfa
Further information:
http://www.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/08/ResearchNews082008Topic3.jsp
http://www.fraunhofer.de/EN/bigimg/2008/rn08fo3g.jsp

Further reports about: cogwheels counter-vibrations damping system rotor blades wind turbines

More articles from Power and Electrical Engineering:

nachricht Silicon as a new storage material for the batteries of the future
24.04.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>