Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analytical theory may bring improvements to lithium-ion batteries

06.03.2013
Researchers have shown theoretically how to control or eliminate the formation of "dendrites" that cause lithium-ion batteries to fail, an advance that if realized would improve safety and might enable the batteries to be charged within a matter of minutes instead of hours.
The dendrites are lithium deposits that form on electrode surfaces and may continue to grow until they cause an internal short circuit, which results in battery failure and possible fire.

Researchers have created an analytical theory that shows how to design experiments to study ways of controlling dendrite growth, and results of the theory allow researchers to predict early stages of dendrite formation.

"We believe that this work is the first of its kind because, prior to its publication, work on this area had heavily relied on anecdotal evidence," said R. Edwin García, an associate professor of materials engineering at Purdue University. "While we have applied this theory to lithium-ion batteries, it was formulated so that it could be readily applied to other emerging battery chemistries, such as magnesium-ion and lithium-sulfur."

Findings were detailed in a research paper published in February in the Journal of the Electrochemical Society. The paper was written by postdoctoral researcher David Ely and García, and the work was funded by Toyota Motor Engineering & Manufacturing North America Inc.

The dendrites are lithium formations that grow like tumors while batteries are being recharged. Some of them add layers that when cut in half reveal an internal structure like tree rings, with each layer representing a single recharge. Because they grow faster when exposed to the high voltages needed for fast recharging, the dendrites limit recharging speed.

"You want your battery to recharge as fast as possible, in a matter of 10 minutes or so," García said. "This would be possible if we could better control or eliminate dendrite growth."

The batteries have two electrodes, called an anode and a cathode, separated by an insulating polymer that keeps the electrodes from touching. When the battery is recharged, lithium ions are shuttled from the cathode to the anode through a liquid or gel called an electrolyte, from which the dendrites draw material to build up on the anode's surface. The dendrites may grow large enough to penetrate the separating barrier and touch the cathode.
"The moment these touch, the battery is dead," García said. "Or worse, if you have too much current going through the dendrites while the battery is being charged, the battery can catch fire."

The researchers used their analytical model to identify behavior associated with formation of the dendrites and have proposed methods to suppress or control them.

One solution might be to engineer the anode's surface chemistry to inhibit the lithium's beading at the surface so that it wets the surface instead of nucleating into a dendrite.

Another potential approach is to induce lithium deposits to grow uniformly, instead of heterogeneously. The heterogeneous growth means the dendrites sprout unevenly at various locations on the electrode's surface. Some of the formations grow in needlelike spikes that quickly breach the barrier to the cathode. High voltage is required for fast charging, but heterogeneous dendrite formation restricts this fast charging. Having uniformly distributed lithium deposits with a uniform size could make fast charging possible by allowing higher voltage.
Another approach might be to charge the batteries using rapid pulses of electricity instead of a constant current.

"We have developed an analytical theory that identifies the different ways in which lithium-ion batteries can fail during recharge," García said. "Fundamentally, we proposed a universal roadmap that allows experimentalists and theoreticians to explore the different regimes of behavior during battery recharging. The proposed analytical roadmap enables researchers to identify the charging conditions that will completely suppress or at least minimize the formation of lithium dendrites."

Findings showed how to keep a dendrite from growing beyond its "critical kinetic radius," the size at which it will either shrink or continue to grow depending on how much current is applied.

Researcher Stephen J. Harris at Lawrence Berkeley National Laboratory has recorded dendrite growth in movies that the Purdue researchers studied for their simulation.

The Purdue researchers have found that the smaller dendrites may transfer their mass to larger ones, causing the larger dendrites to grow faster and more stably. The work was validated against available experimental data in the scientific literature.

"We also unified conflicting existing theories as they were reported in the 1990s and early 2000s," Garcia said.

The work is ongoing, with future research possibly aimed at learning more detail about dendrite behavior.

"The dendrites don't grow just everywhere, but at very specific locations on the anode," García said. "At the end of the day we want to model that. Such a comprehensive model would lead to advanced battery designs of improved performance and reliability."

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Source: R. Edwin García, 765-494-0148, redwing@purdue.edu

Note to Journalists: A copy of the research paper is available from Emil Venere, Purdue News Service, at 765-494-4709, venere@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>