Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air Conditioning System That Cools with Sunlight

14.06.2011
Siemens researchers in Bangalore, India, are working on a refrigeration system that uses photovoltaics to generate its own electricity, making it entirely independent of a separate power supply.

Air conditioning systems contribute a lot to CO2 emissions in these hot regions. About 60 percent of the electricity consumed in Indian office buildings on workdays is used for air conditioning. The latest issue of the research magazine "Pictures of the Future" reports that the developers from Siemens Corporate Technology are building an air conditioner consisting of a light collection system, which captures heat from the sun, and a photovoltaic unit that acts as the power supply. Plans call for the device to be installed on the roof of the Siemens building in Bangalore at the beginning of 2012.


This solution is based on the proven principle of the absorption refrigerator, which generally uses a salt solution. Water serves as the coolant. The collected solar energy heats up the water-salt mixture and separates the water by evaporation. The water is then condensed and pumped into a vaporizer, which cools the system. Because the interior of the vaporizer is a partial vacuum, even the low outside temperatures are high enough to evaporate the water. Heat is drawn in from the surroundings and the room is cooled. The water vapor is then once again returned to the salt solution. Because the system constitutes a cycle, the surroundings are constantly cooled. Electricity from the photovoltaic unit is required to pump the water and the salt solution through the system.

The systems used previously for this process required a large, costly photovoltaic unit, which was too big for the roofs of most office buildings. The Siemens researchers are now building a compact unit and making better use of the solar energy. The challenge they face is to simultaneously generate enough heat for the cooling process as well as electricity for the pump. One idea here is to use a special fluid that extracts enough heat from the sunlight before it reaches the photovoltaic unit. Although the amount of electricity made available wouldn’t be sufficient for conventional vapor-compression refrigeration systems, it could power the small pumps used in the absorption refrigeration process.

This technology has tremendous potential. It is estimated that India will need around 31,000 megawatts of power to cool its offices and businesses in 2015. That’s equivalent to the power produced by around 30 large coal-fired power plants.

Dr. Norbert Aschenbrenner | Siemens ResearchNews
Further information:
http://www.siemens.com/researchnews

More articles from Power and Electrical Engineering:

nachricht Summer heat for the winter
10.01.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors
10.01.2017 | University of Illinois College of Engineering

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>