Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

20.1%-efficient screen printed silicon solar cell with novel rear passivation layer

08.03.2012
The Institute for Solar Energy Research Hamelin (ISFH) in collaboration with SINGULUS TECHNOLOGIES AG increases the conversion efficiency of screen-printed silicon solar cells from today’s industry typical 17.0% to 18.5% to a record value of 20.1%, as confirmed by an independent measurement from the Fraunhofer ISE.
A novel ICP-AlOx / SiNy double layer at the rear side of the solar cell enables the improvement without applying a “selective emitter”. 20.1% is one of the highest efficiencies worldwide reported for industrial type silicon solar cells with screen-printed metallization (only Schott Solar and Q-Cells achieved higher efficiencies of 20.2%).

Two technological improvements enable the increased conversion efficiency. First, an ICP-AlOx/SiNy double layer passivates the rear surface of the solar cell. ICP stands for “Inductively Coupled Plasma”, which is a novel deposition method for AlOx developed at ISFH in cooperation with SINGULUS TECHNOLOGIES AG. SINGULUS is currently developing an integrated production solution for this passivation layer stack. The screen-printed aluminum on the cell’s rear side locally contacts the silicon wafer through line shaped contact openings formed by laser ablation. The modified cell rear improves reflection and reduces the charge carrier recombination which increases both the current and voltage of the solar cell.
Second, the cell front side is metallized using a “Print on Print” process, which results in a reduced contact finger width and hence less shadowing loss. This advanced screen printing process was optimized at ISFH in collaboration with DEK Solar, using their high accuracy Eclipse screen printing platform and precision screens. Beyond these innovations, the solar cell applies typical industrial processes, in particular a homogeneously phosphorus diffused emitter and a 156 x 156 mm2 large Czochralski (Cz) silicon wafer.

“This excellent result was achieved within the research project HighScreen funded by the German Federal Ministry of the Environment and also funded by our partners SolarWorld AG, Schott Solar AG, Solland Solar Cells GmbH, RENA GmbH und SINGULUS TECHNOLOGIES AG”, explains Dr. Thorsten Dullweber, head of the ISFH research group Solar Cell Production Processes. “Additionally, our collaboration with DEK Solar, Ferro Corporation and Heraeus GmbH accelerated the progress.” Prof. Dr. Rolf Brendel, Director of the ISFH, adds: “These technological innovations show the high potential to further reduce the costs of photovoltaic electricity.”

“The significant efficiency improvement demonstrated by the ICP-AlOx process further encourages SINGULUS in our strategy to offer an integrated production solution with ICP-AlOx for rear passivated solar cells”, explains Dr. Björn Roos, Product Manager Solar at SINGULUS TECHNOLOGIES AG.

About 80% of today’s industrially manufactured solar cells apply p-type silicon wafers in combination with screen printed metal contacts. Hence, efficiency improvements for this type of solar cell are highly relevant for the photovoltaic industry and represent an intensive field of research worldwide.

Dr. Roland Goslich | idw
Further information:
http://www.isfh.de/

Further reports about: DEK ISFH SINGULUS Solar Decathlon solar cells technologies

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>