Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of capital not a 'death sentence' for start-ups

05.06.2009
A new study from North Carolina State University is turning the conventional wisdom about technology start-up companies on its head, showing that ventures with moderate levels of undercapitalization can still be successful and that a great management team is not more important than a top-notch technology product when it comes to securing sufficient amounts of capital.

"Our research shows that undercapitalization is not a death sentence for start-up ventures," says Dr. David Townsend, an assistant professor of management, innovation and entrepreneurship at NC State who co-authored the study. "There are things a venture can do to survive and succeed." Basically, Townsend says, start-ups that fall short of their fund-raising goals can take steps to minimize their cash outflows in order to stay viable.

Undercapitalized ventures "need to engage in management strategies focused on reducing their costs. For example, outsourcing certain development tasks and accounting responsibilities or exchanging services with other companies – saying we'll build your Web site in exchange for a year's worth of accounting services, etc.," Townsend says.

The study also found that there is little evidence to support the long-standing tenet that a great management team is the most important part of a venture company when it comes to securing investment in a start-up. The study shows that a venture with an "A," or top notch, management team and an A technology is likely to meet its capitalization goal. But the researchers were surprised to find that the combination of a "B," or less than ideal, management team with a B technology was also quite successful in meeting capitalization goals. Ventures that had an A management team but a B technology, or vice versa, were usually underfunded.

Townsend explains that B management teams with B technologies are probably more successful at meeting their capitalization goals because they are aware of their shortcomings, and modify their capitalization targets accordingly. For example, these B teams may minimize management salaries or restrict their marketing budgets.

Similarly, Townsend says the evidence implies that A management teams with B technologies, or vice versa, often fall short of their capitalization targets because they have not modified their fund-raising goals – and as a result investors don't buy in at a sufficient level to fully fund the venture's intended strategies.

The study, "Resource Complementarities, Trade-Offs, and Undercapitalization in Technology-Based Ventures: An Empirical Analysis," was co-authored by Townsend and Dr. Lowell W. Busenitz of the University of Oklahoma. The study will be presented June 5 at the Babson College Entrepreneurship Research Conference in Boston and at the Brown International Advanced Research Institutes in Providence, R.I., on June 18.

The research was supported by North Carolina State University, The University of Oklahoma, and i2E – a non-profit corporation focused on wealth creation by growing the technology-based entrepreneurial economy in Oklahoma.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Business and Finance:

nachricht Mathematical confirmation: Rewiring financial networks reduces systemic risk
22.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Frugal Innovations: when less is more
19.04.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Business and Finance >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>