Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gone with the wind–why the fast jet stream winds cannot contribute much renewable energy after all

30.11.2011
The assumption that high jet steam wind speeds in the upper atmosphere correspond to high wind power has now been challenged by researchers of the Max Planck Institute for Biogeochemistry in Jena, Germany.

Taking into account that the high wind speeds result from the near absence of friction and not from a strong power source, Axel Kleidon and colleagues found that the maximum extractable energy from jet streams is approximately 200 times less than reported previously. Moreover, climate model simulations show that energy extraction by wind turbines from jet streams alters their flow, and this would profoundly impact the entire climate system of the planet.


Graphics depicting the calculations for high kinetic energy transport (upper panel) versus maximum kinetic energy extraction rates (lower panel) from jet streams. Please note the units.
L. Miller / MPI-BGC Jena


Artificial picture illustrating potential extraction of jet stream wind power.
L. Miller / MPI-BGC Jena

Jet streams are regions of continuous wind speeds greater than 25 m/s that occur at altitudes of 7-16 km. Their high speeds seem to suggest an almost unlimited source of renewable energy that would only need airborne wind energy technology to utilize it. Claims that this potential energy source could “continuously power all civilization” sparked large investments into exploitation of this potential energy resource.

However, just like any other wind and weather system on Earth, jet streams are ultimately caused by the fact that the equatorial regions are heated more strongly by the sun than are polar regions. This difference in heating results in large differences in temperature and air pressure between the equator and the poles, which are the driving forces that set the atmosphere into motion and create wind. It is this differential heating that sets the upper limit on how much wind can be generated and how much of this could potentially be used as a renewable energy resource.

It is well known in meteorology that the high wind speeds of jet streams result from the near absence of friction. In technical terms, this fact is referred to in meteorology as “geostrophic flow”. This flow is governed by an accelerating force caused by pressure differences in the upper atmosphere, and the so-called Coriolis force arising from the Earth’s rotation. Because the geostrophic flow takes place in the upper atmosphere, far removed from the influence of the surface and at low air density, the slow-down by friction plays a very minor role. Hence, it takes only very little power to accelerate and sustain jet streams. “It is this low energy generation rate that ultimately limits the potential use of jet streams as a renewable energy resource”, says Dr. Axel Kleidon, head of the independent Max Planck Research Group ‘Biospheric Theory and Modelling’. Using this approach based on atmospheric energetics, Kleidon’s group used climate model simulations to calculate the maximum rate at which wind energy can be extracted from the global atmosphere. Their estimate of a maximum of 7.5 TW (1 TW = 10^12 W, a measure for power and energy consumption) is 200-times less than previously reported and could potentially account for merely about half of the global human energy demand of 17 TW in 2010.

Max Planck researchers also estimated the climatic consequences that would arise if jet stream wind power would be used as a renewable energy resource. As any wind turbine must add some drag to the flow to extract the energy of the wind and convert it into electricity, the balance of forces of the jet stream must also change as soon as energy is extracted. If 7.5 TW were extracted from jet streams as a renewable energy source, this would alter the natural balance of forces that shape the jet streams to such an extent that the driving atmospheric pressure gradient between the equator and the poles is depleted. “Such a disruption of jet stream flow would slow down the entire climate system. The atmosphere would generate 40 times less wind energy than what we would gain from the wind turbines”, explains Lee Miller, first author of the study. “This results in drastic changes in temperature and weather”.

The Max Planck study was published in the scientific journal Earth System Dynamics on November 29th, 2011. This study illustrates that fast winds are not always strong and powerful. Seemingly environmentally-friendly renewable energy technologies need to be carefully evaluated in the context of how the whole Earth system works.

Contact:
Dr. Axel Kleidon
Max Planck Institute for Biogeochemistry, Jena, Germany
Phone: +49 3641 576217
Fax: +49 3641 577200
Email: akleidon@bgc-jena.mpg.de
Background Information:
The Max Planck Institute for Biogeochemistry, founded in 1997, is dedicated to the study of long-term interactions among the biosphere, atmosphere, geosphere and the oceans. The research aims of the Institute include:
- quantifying the role of these interactions in the control of the Earth’s climate in a time of increasing anthropogenic impact;
- developing a quantitative and predictive understanding of the regulation of processes in ecosystems and their attendant biogeochemical cycles in the face of climate change;

- and investigating feedback mechanisms at the Earth’s surface that involve vegetation, atmospheric composition and climate. For more information see www.bgc-jena.mpg.de.

The independent Max Planck Research Group „Biospheric Theory and Modelling“, headed by Dr. Axel Kleidon, develops and uses theoretical approaches and numerical simulation models to investigate the role of the biota in driving the global geochemical cycles within the Earth system and how these affect the climatic conditions. It applies complex systems theories as well as thermodynamics to describe biotic effects on the environment. The group develops a range of simulation models to reproduce and explain the observed geographic variation of terrestrial vegetation, fluxes of energy, water, carbon, and other elements for the present-day and its past evolution. These approaches are used to evaluate the causes and consequences of human modifications to the Earth system (www.bgc-jena.mpg.de/bgc-theory).

Further information on the contents of this press release is available at www.bgc-jena.mpg.de/bgc-theory. Original data are published in:

- L.M. Miller, F. Gans, & A. Kleidon, 2011: Jet stream wind power as a renewable energy resource: little power, big impacts; Earth Syst. Dynam. 2, 201–212, 2011, doi: 10.5194/esd-2-201-2011.

Dr. Eberhard Fritz | Max-Planck-Institut
Further information:
http://www.bgc-jena.mpg.de/
http://www.bgc-jena.mpg.de/bgc-theory

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>