Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Upper atmosphere facilitates changes that let mercury enter food chain

19.12.2011
Humans pump thousands of tons of vapor from the metallic element mercury into the atmosphere each year, and it can remain suspended for long periods before being changed into a form that is easily removed from the atmosphere.

New research shows that the upper troposphere and lower stratosphere work to transform elemental mercury into oxidized mercury, which can easily be deposited into aquatic ecosystems and ultimately enter the food chain.

"The upper atmosphere is acting as a chemical reactor to make the mercury more able to be deposited to ecosystems," said Seth Lyman, who did the work as a research assistant professor in science and technology at the University of Washington Bothell.

Lyman, now with Utah State University's Energy Dynamics Laboratory, is lead author of a paper documenting the research published online Dec. 19 by the journal Nature Geoscience. Daniel Jaffe, a science and technology professor at UW Bothell, is coauthor of the paper. The work was supported by a grant from the National Science Foundation.

The findings come from data gathered during research flights in October and November 2010 over North America and Europe by a National Center for Atmospheric Research aircraft.

The campaign used a device built at UW Bothell that can detect both elemental mercury and oxidized mercury in the same air sample, and the device recorded readings every 2.5 minutes. The flights typically are at altitudes of 19,000 to 23,000 feet, well below the confluence of the troposphere and the stratosphere, but several times during the 2010 flights – particularly on a trip from Bangor, Maine, to Broomfield, Colo. – the aircraft encountered streams of air that had descended from the stratosphere or from near it.

The result was the first time that the two mercury forms were measured together in a way that showed that elemental mercury is transformed into oxidized mercury, Lyman said, and evidence indicated the process occurs in the upper atmosphere.

Exactly how the oxidation takes place is not known with certainty but, once the transformation takes place, the oxidized mercury is quickly removed from the atmosphere, mostly through precipitation or air moving to the surface. After it settles to the surface, the oxidized mercury is transformed by bacteria into methyl mercury, a form that can be taken into the food chain and eventually can result in mercury-contaminated fish.

Some areas, such as the Southwest United States, appear to have specific climate conditions that allow them to receive more oxidized mercury from the upper atmosphere than other areas, Lyman noted.

He added that where the mercury settles to the surface can be thousands of miles from where it was emitted. For example, mercury from coal burning in Asia could rise into the atmosphere and circle the globe several times before it is oxidized, then could come to the surface anywhere. Understanding where it is oxidized and deposited would help efforts to predict ecosystem impacts of mercury emissions, he said.

"Much of emitted mercury is deposited far from its original sources," Lyman said. "Mercury emitted on the other side of the globe could be deposited right at our back door, depending on where and how it is transported, chemically transformed and deposited."

For more information, contact Lyman at 425-381-3095 or slyman@uwb.edu; or Jaffe at 425-352-5357 or djaffe@uw.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Serious children’s infections also spreading in Switzerland

26.07.2017 | Health and Medicine

Biomarkers for identifying Tumor Aggressiveness

26.07.2017 | Life Sciences

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>