Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U.S. Rivers and Streams Saturated With Carbon

Significant amount of carbon in land is leaking into streams and rivers, then to the atmosphere

Rivers and streams in the United States are releasing substantially more carbon dioxide into the atmosphere than previously thought.

This according to researchers publishing their results in the current issue of the journal Nature Geoscience.

Their findings could change the way scientists model the movement of carbon among land, water and the atmosphere.

"Direct measurements of carbon dioxide concentrations and fluxes in streams and rivers are still extremely rare," said Henry Gholz, program director in the National Science Foundation's (NSF) Division of Environmental Biology, which funded the research.

"This study demonstrates that both are much higher than assumed. The research should enable more predictive and precise models of carbon cycling at regional to global scales."

The researchers found that a significant amount of carbon contained in land, which first is absorbed by plants and forests through the air, is leaking into streams and rivers and then released into the atmosphere before reaching coastal waterways.

"What we are able to show is that there is a source of atmospheric carbon dioxide from streams and rivers, and that it is significant enough for terrestrial modelers to take note of it," said David Butman, a co-author of the paper and scientist at the Yale University School of Forestry & Environmental Studies.

He and his co-author, ecologist Peter Raymond also of Yale, analyzed data from samples of more than 4,000 rivers and streams throughout the United States, and incorporated detailed geospatial data to model the flux of carbon dioxide from water.

This release is equal to a car burning 40 billion gallons of gasoline, enough to drive back and forth to the moon 3.4 million times.

"These rivers breathe a lot of carbon," said Butman. "They are a source of carbon dioxide, just like we breathe out carbon dioxide and like smokestacks emit carbon dioxide.

"This has never been systematically estimated from a region as large as the United States."

The paper, titled "Significant Efflux of Carbon Dioxide from Streams and Rivers in the United States," also indicates that as the climate heats up there will be more rain and snow, and that an increase in precipitation will result in even more terrestrial carbon flowing into rivers and streams and being released into the atmosphere.

Any accurate estimate of carbon uptake vs. carbon released must include the carbon in streams and rivers, Butman said.

The researchers note that currently it's difficult to determine how to include this flux in regional carbon budgets, because the influence of human activity on the release of carbon dioxide into streams and rivers is still unknown.

The research was also funded by a NASA Earth and Space Science Fellowship, a NASA Carbon & Ecosystems Program grant, and the Yale School of Forestry & Environmental Studies.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734
David DeFusco, Yale University (203) 436-4842
Related Websites
NSF Harvard Forest LTER Site:

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:

Further reports about: Carbon Forestry NASA NSF Rivers STREAM carbon dioxide environmental risk global scale

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>