Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SwRI scientists publish first radiation measurements from the surface of Mars

10.12.2013
In the first 300 days of the Mars Science Laboratory surface mission, the Curiosity rover cruised around the planet’s Gale Crater, collecting soil samples and investigating rock structures while the onboard Radiation Assessment Detector made detailed measurements of the radiation environment on the surface of Mars.

“Our measurements provide crucial information for human missions to Mars,” said Dr. Don Hassler, a Southwest Research Institute program director and RAD principal investigator. Hassler is the lead author of “Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover,” scheduled for publication in the journal Science online on December 9, 2013.

“We’re continuing to monitor the radiation environment, and seeing the effects of major solar storms on the surface and at different times in the solar cycle will give additional important data. Our measurements also tie into Curiosity’s investigations about habitability. The radiation sources that are of concern for human health also affect microbial survival as well as the preservation of organic chemicals.”

Two forms of radiation pose potential health risks to astronauts: a chronic low dose of galactic cosmic rays (GCRs) and the possibility of short-term exposures to the solar energetic particles (SEPs) associated with solar flares and coronal mass ejections. The radiation on Mars is much harsher than on Earth for two reasons: Mars lacks a global magnetic field and the Martian atmosphere is much thinner than Earth’s, providing little shielding to the surface.

This environmental factor poses a challenge for future human exploration of Mars and is also important in understanding both geological and potential biological evolution on Mars. Both GCRs and SEPs interact with the atmosphere and, if energetic enough, penetrate into the Martian soil, or regolith, where they produce secondary particles that contribute to the complex radiation environment on the Martian surface, which is unlike anything on Earth.

“The RAD surface radiation data show an average GCR dose equivalent rate of 0.67 millisieverts per day from August 2012 to June 2013 on the Martian surface,” said Hassler. Radiation dose is measured in units of sievert (Sv) or millisievert (1/1000 Sv). “In comparison, RAD data show an average GCR dose equivalent rate of 1.8 millisieverts per day on the journey to Mars, when RAD measured the radiation inside the spaceship.”

According to RAD data, most mission radiation exposure will be during outbound and return travel, when the astronauts will be exposed to the radiation environment in interplanetary space, shielded only by the spacecraft itself. The total during just the transit phases of a Mars mission would be approximately 0.66 Sv for a round trip with current propulsion systems and during similar solar activity. A 500-day mission on the surface would bring the total exposure to around 1 Sv.

Long-term population studies have shown that exposure to radiation increases a person’s lifetime cancer risk; exposure to a dose of 1 Sv is associated with a five percent increase in fatal cancer risk. Although NASA has generally established a three percent increased risk of fatal cancer as an acceptable career limit for astronauts in low earth orbit, it does not currently have a limit for deep space missions, and is working with the National Academies Institute of Medicine to determine appropriate limits for deep space missions, such as a mission to Mars in the 2030s.

SwRI, together with Christian Albrechts University in Kiel, Germany, built RAD with funding from the NASA Human Exploration and Operations Mission Directorate and Germany’s national aerospace research center, Deutsches Zentrum für Luft- und Raumfahrt.

NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, Calif., manages the Mars Science Laboratory Project. The NASA Science Mission Directorate, at NASA Headquarters in Washington, manages the Mars Exploration Program.

"Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover,” published in Science online December 9, was written by Hassler, Cary Zeitlin of SwRI, Robert F. Wimmer-Schweingruber of Christian Albrechts University, Bent Ehresmann of SwRI, Scot Rafkin of SwRI, Jennifer L. Eigenbrode of NASA’s Goddard Space Flight Center, David E. Brinza of JPL, Gerald Weigle of SwRI, Stephan Böttcher of Christian Albrechts University , Eckart Böhm of Christian Albrechts University, Soenke Burmeister of Christian Albrechts University, Jingnan Guo of Christian Albrechts University, Jan Köhler of Christian Albrechts University, Cesar Martin of Christian Albrechts University, Guenther Reitz of German Aerospace Center in Cologne, Germany, Francis A. Cucinotta of University of Nevada Las Vegas, Myung-Hee Kim of Universities Space Research Association, David Grinspoon of the Denver Museum of Nature and Science, Mark A. Bullock of SwRI, Arik Posner of NASA, Javier Gómez-Elvira of Centro de Astrobiología in Madrid, Spain, Ashwin Vasavada of JPL, and John P.Grotzinger of JPL, and the MSL Science Team.

Editors:

Images to accompany this story are available at: http://www.swri.org/press/2013/mars-measurements.htm.

For more information, contact Deb Schmid, (210) 522-2254, Communications Department, Southwest Research Institute, PO Drawer 28510, San Antonio, TX 78228-0510.

Deb Schmid | EurekAlert!
Further information:
http://www.swri.org
http://www.swri.org/9what/releases/2013/mars-measurements.htm#.Uqbw_lgwfcs

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>