Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sulfate aerosols cool climate less than assumed

10.05.2013
Life span of cloud-forming sulfate particles in the air is shorter than assumed due to a sulfur dioxide oxidation pathway which has been neglected in climate models so far

Sulfur dioxide is as antagonist of greenhouse gases less effective than previously assumed. It forms sulfate aerosol particles in the air, which reflect sunlight, and as so-called cloud condensation nuclei influence the chemical processes within clouds. Therefore, sulfate aerosol particles help to cool the earth, making them an important factor in climate models.


Measurement Station Schmücke. HCCT 2010 (Hill Cap Cloud Thuringia 2010) - A ground-based integrated study of chemical-aerosol-cloud interactions at the Schmücke Mountain in the Thuringian Forest in September/October 2010.
Dr. Stephan Mertes/TROPOS

However, a team around researchers from the Max Planck Institute for Chemistry found out that it is likely most models overestimate the cooling effect of these particles. The reason is a largely disregarded reaction pathway catalysed by mineral dust within clouds, which has a strong influence on the life span of sulfate aerosol particles and their ability to reflect sunlight.

In their role as condensation nuclei, aerosol particles are an important trigger for the formation of clouds. As humidity accumulates on the particles droplets are formed, which later develop into clouds. Within the clouds, however, the chemical composition of these aerosol particles changes.

In order to find out exactly what happens within the clouds, Eliza Harris and Bärbel Sinha from the Max Planck Institute for Chemistry, together with other scientists form Mainz and further research institutes, investigated different air parcels. The special feature of their experiments was that they investigated a cloud which formed on top of a mountain. The scientists could therefore trace how the aerosol particles changed while the cloud was forming.

Isotop analysis reveals how sulfate was formed

Eliza Harris’ main focus was the analysis of sulfur compounds. She investigated their composition in air samples which were collected at different times: Before the parcels entered the cloud, while they were in the cloud, and after they left the cloud.

The sulfur compounds in the samples differed in the distribution of sulfur isotopes. Isotopes are atoms of the same elements differing in the number of neutrons in the core and thus can be differentiated with the help of a mass spectrometer. The NanoSIMS ion microprobe, a highly sensitive mass spectrometer, enabled Harris to look into the chemical processes. “The relative reaction rates of isotopes are like fingerprints, which tell us how the sulfate was formed from the sulfur dioxide”, Eliza Harris explains her method, which was part of her doctoral research in the group of Peter Hoppe at the Max Planck Institute for Chemistry.

Role of transition metal ions in the formation of sulfate aerosols underestimated

Harris’ measurements showed that sulfate in clouds forms mostly through the oxidation of sulfur dioxide (SO2) by oxygen (O2). This reaction is catalysed by so-called transition metal ions (TMI) like iron, manganese, titanium or chromium. In addition, sulfate production mostly occurred in cloud droplets which formed on large mineral dust particles, the most important source of transition metal ions. Much less often the trail led to the oxidation of SO2 by hydrogen peroxide (H2O2) and ozone (O3). “As my colleagues and I compared the basic assumptions of climate models with my results we were very surprised, because only one of twelve models considers the role of transition metal ions in the formation of sulfate”, says the scientist, who is now working at the Massachusetts Institute of Technology (MIT) in the USA. Instead, most of the models used the alternative pathways of sulfur dioxide oxidation by hydrogen peroxide (H2O2), ozone (O3) and the hydroxyl radical (OH).

Sulfate produced catalytically through transition metal ions are formed on relatively large mineral dust particles, making them bigger than those formed through the reaction with hydrogen peroxide. Due to their size, they fall from the air at a faster rate – by force of gravity. The time frame for climate cooling by sulfate particles could therefore be shorter than has been believed.

A clear effect is to be expected in China and India

Eliza Harris assumes that the models have overestimated the climate cooling effect of sulfate aerosols. So far it is not quantifiable to what degree Harris’ discovery will impact climate prognoses. However, future models should consider the TMI catalysis reaction as an important pathway for the oxidation of sulfur dioxide, says the scientist. She thinks that the impact on climate models of European regions might probably be low, as mineral dust concentrations in the air are small and sulfur dioxide (SO2) emissions are declining. “In India and China, however, where sulfur dioxide emissions are expected to rise in the near future, combined with significantly higher concentrations of mineral dust in the air, the effect could be stronger”, assumes Harris. Future studies will show.

The study, which has been published in the journal Science, was conducted in collaboration with the following institutes: the Max Planck Institute for Chemistry in Mainz, the Leibniz Institute for Tropospheric Research in Leipzig, the Department of Atmospheric Science at Colorado State University, the Earth System Science Research Centre at the Institute of Geosciences at the University of Mainz, and the Institute of Atmospheric Physics at the University of Mainz.

Eliza Harris was recently awarded the Dieter Rampacher Prize as youngest doctoral candidate of the Max Planck Society in 2012.

AR/PH

Original Publication
Eliza Harris, Bärbel Sinha, Dominik van Pinxteren, Andreas Tilgner, Khanneh Wadinga Fomba, Johannes Schneider, Anja Roth, Thomas Gnauk, Benjamin Fahlbusch, Stephan Mertes, Taehyoung Lee, Jeffrey Collett, Stephen Foley, Stephan Borrmann, Peter Hoppe and Hartmut Herrmann
Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2

Science, 10. Mai 2013; doi: 10.1126/science.1230911

Dr. Susanne Benner | Max-Planck-Institut
Further information:
http://www.mpic.de/

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
17.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>