Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study on the Little Ice Age: Low solar activity just marginally cools the climate

01.09.2011
The weakening sun was not the determinant factor for the Little Ice Age. Strong volcanic eruptions in particular, but also a smaller amount of greenhouse gases in the atmosphere were important factors during this period of cooler climate in the 16th and 17th century, a new study shows.

This implies that low solar activity, which is expected by some researchers for the coming decades, cannot considerably slow down global warming caused by humankind’s greenhouse gas emissions.

“The impact of variations in solar activity on the climate is often overestimated,” says Georg Feulner of the Potsdam Institute for Climate Impact Research (PIK). He is the author of the article just published in Geophysical Research Letters. “This is what our new analysis shows for the past – and we can learn from this to understand future climate change.”

Sun spots are a visible sign of solar activity. When their number is small, solar radiation intensity is measurably lower. In the late 17th century, after a slow decrease of solar activity that started around 1600, the sun entered an extended period of rest, the Maunder Minimum. This is often considered to be the dominant cause of the cooling of the Earth’s climate during the Little Ice Age.

Two studies published earlier this year found two very different estimates for solar radiation during the Maunder Minimum. One concludes that radiation intensity at that time was substantially lower than today. The other one says that solar activity was just as low as during the extraordinary solar minimum in the years 2008/09.

The impact of these two estimates of solar radiation on temperatures in the Northern hemisphere during the last 1000 years has now been determined for the first time. Feulner fed the data on solar intensity into a climate model – a computer-based complex system of equations simulating the most important climatic processes in the oceans and the atmosphere. Changes in greenhouse gas concentrations and the cooling effect of sulfate aerosols from volcanic eruptions are also considered. The temperature computed by the model was then compared to temperatures reconstructed from natural climate archives like ice cores, tree rings, sediments and corals.

The result is unequivocal. In the model’s calculations, the estimates from the study concluding that solar radiation in the Little Ice Age was extremely low result in temperatures which are significantly below observed temperatures in periods of low solar activity. The estimates of the other study which did not show big differences between radiation intensity during the Maunder Minimum and the recent solar minimum yield realistic temperatures. So the climatic data from natural archives support the second study. “To understand climate history, we certainly have to take into account all possibly relevant factors,” Feulner says. “However, the impact of solar activity on the climate is comparatively small. That is what the new study confirms.”

Now what do these findings mean for our century in case the sun enters a quiet period comparable to the Maunder minimum as some experts suggest? “This would bring a cooling effect of at most 0.3 degrees,” Feulner says. This could decrease anthropogenic global warming by roughly 10 percent or less. “Regrettably, this is too little to considerably slow down anthropogenic climate change.”

Article: Feulner, G. (2011): Are the most recent estimates for Maunder Minimum solar irradiance in agreement with temperature reconstructions? Geophysical Research Letters, Vol. 38, L16706 [doi:10.1029/2011GL048529]

For further information please contact the PIK press office:

Phone: +49 331 288 25 07
E-mail: press@pik-potsdam.de

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de
http://www.agu.org/pubs/crossref/2011/2011GL048529.shtml
http://soho.esac.esa.int/

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>