Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers attribute thinning of Greenland glacier to ocean warming preceded by atmospheric changes

30.09.2008
The sudden thinning in 1997 of Jakobshavn Isbræ, one of Greenland's largest glaciers, was caused by subsurface ocean warming, according to research published in the journal Nature Geoscience. The research team traces these oceanic shifts back to changes in the atmospheric circulation in the North Atlantic region.

The study, whose lead author was David Holland, director of the Center for Atmosphere Ocean Science, part of New York University's Courant Institute of Mathematical Sciences, suggests that ocean temperatures may be more important for glacier flow than previously thought.

The project also included scientists from the Wallops Flight Facility, Canada's Memorial University, the Danish Meteorological Institute, and the Greenland Institute of Natural Resources.

Jakobshavn Isbræ, a large outlet glacier feeding a deep-ocean fjord on Greenland's west coast, went from slow thickening to rapid thinning beginning in 1997. Several explanations have been put forward to explain this development. The scientists in the Nature Geoscience study sought to address the matter comprehensively by tracing changes in ocean temperatures and the factors driving these changes.

In doing this, they relied on previous results published by others that used NASA's Airborne Topographic Mapper, which has made airborne surveys along a 120-kilometer stretch in the Jakobshavn ice-drainage basin nearly every year since 1991. While many other glaciers were thinning around Greenland, these surveys revealed that Jakobshavn Isbræ thickened substantially from 1991 to 1997. But, after 1997, Jakobshavn Isbræ began thinning rapidly. Between 1997 and 2001, Airborne Topographic Mapper surveys showed an approximately 35-meter reduction in surface elevations on the glacier's 15-kilomater floating ice tongue. This is far higher than thinning rates of grounded ice immediately upstream.

The researchers reported that these changes coincided with jumps in subsurface ocean temperatures. These temperatures were recorded by the Greenland Institute of Natural Resources from 1991 to 2006 over nearly the entire western Greenland continental shelf. These data indicate a striking, substantial jump in bottom temperature in all parts in the survey area during the second half of the 1990s. In particular, they show that a warm water pulse arrived suddenly on the continental shelf on Disko Bay, which is in close proximity Jakobshavn Isbræ, in 1997. The arrival coincided precisely with the rapid thinning and subsequent retreat of Jakobshavn Isbræ. The warm water mass remains today, and Jakobshavn Isbræ is still in a state of rapid retreat.

The remaining question, then, is what caused the rise in water temperatures during this period.

The researchers traced these oceanic changes back to changes in the atmospheric circulation in the North Atlantic region. The warm, subsurface waters off the west Greenland coast are fed from the east by the subpolar gyre—or swirling water—of the North Atlantic, by way of the Irminger current. The current flows westward along the south coast of Iceland. Since the mid-1990s, observations show a warming of the subpolar gyre and the northern Irminger Basin, which lies south of Greenland. The researchers attributed this warming to changes in the North Atlantic Oscillation (NAO), which is a large-scale fluctuation in the atmospheric pressure system situated in the region. The surface pressure drives surface winds and wintertime storms from west to east across the North Atlantic affecting climate from New England to western Europe.

Specifically, they noted a major change in the behavior of the NAO during the winter of 1995?, which weakened the subpolar gyre, allowing warm subpolar waters to spread westward, beneath colder surface polar waters, and consequently on and over the west Greenland continental shelf.

"The melting of the ice sheets is the wild card of future sea level," Holland explained, "and our results hint that modest changes in atmospheric circulation, possibly driven by anthropogenic influences, could also cause future rapid retreat of the Antarctic Ice Sheet, which holds a far greater potential for sea level rise."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>