Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers attribute thinning of Greenland glacier to ocean warming preceded by atmospheric changes

The sudden thinning in 1997 of Jakobshavn Isbræ, one of Greenland's largest glaciers, was caused by subsurface ocean warming, according to research published in the journal Nature Geoscience. The research team traces these oceanic shifts back to changes in the atmospheric circulation in the North Atlantic region.

The study, whose lead author was David Holland, director of the Center for Atmosphere Ocean Science, part of New York University's Courant Institute of Mathematical Sciences, suggests that ocean temperatures may be more important for glacier flow than previously thought.

The project also included scientists from the Wallops Flight Facility, Canada's Memorial University, the Danish Meteorological Institute, and the Greenland Institute of Natural Resources.

Jakobshavn Isbræ, a large outlet glacier feeding a deep-ocean fjord on Greenland's west coast, went from slow thickening to rapid thinning beginning in 1997. Several explanations have been put forward to explain this development. The scientists in the Nature Geoscience study sought to address the matter comprehensively by tracing changes in ocean temperatures and the factors driving these changes.

In doing this, they relied on previous results published by others that used NASA's Airborne Topographic Mapper, which has made airborne surveys along a 120-kilometer stretch in the Jakobshavn ice-drainage basin nearly every year since 1991. While many other glaciers were thinning around Greenland, these surveys revealed that Jakobshavn Isbræ thickened substantially from 1991 to 1997. But, after 1997, Jakobshavn Isbræ began thinning rapidly. Between 1997 and 2001, Airborne Topographic Mapper surveys showed an approximately 35-meter reduction in surface elevations on the glacier's 15-kilomater floating ice tongue. This is far higher than thinning rates of grounded ice immediately upstream.

The researchers reported that these changes coincided with jumps in subsurface ocean temperatures. These temperatures were recorded by the Greenland Institute of Natural Resources from 1991 to 2006 over nearly the entire western Greenland continental shelf. These data indicate a striking, substantial jump in bottom temperature in all parts in the survey area during the second half of the 1990s. In particular, they show that a warm water pulse arrived suddenly on the continental shelf on Disko Bay, which is in close proximity Jakobshavn Isbræ, in 1997. The arrival coincided precisely with the rapid thinning and subsequent retreat of Jakobshavn Isbræ. The warm water mass remains today, and Jakobshavn Isbræ is still in a state of rapid retreat.

The remaining question, then, is what caused the rise in water temperatures during this period.

The researchers traced these oceanic changes back to changes in the atmospheric circulation in the North Atlantic region. The warm, subsurface waters off the west Greenland coast are fed from the east by the subpolar gyre—or swirling water—of the North Atlantic, by way of the Irminger current. The current flows westward along the south coast of Iceland. Since the mid-1990s, observations show a warming of the subpolar gyre and the northern Irminger Basin, which lies south of Greenland. The researchers attributed this warming to changes in the North Atlantic Oscillation (NAO), which is a large-scale fluctuation in the atmospheric pressure system situated in the region. The surface pressure drives surface winds and wintertime storms from west to east across the North Atlantic affecting climate from New England to western Europe.

Specifically, they noted a major change in the behavior of the NAO during the winter of 1995?, which weakened the subpolar gyre, allowing warm subpolar waters to spread westward, beneath colder surface polar waters, and consequently on and over the west Greenland continental shelf.

"The melting of the ice sheets is the wild card of future sea level," Holland explained, "and our results hint that modest changes in atmospheric circulation, possibly driven by anthropogenic influences, could also cause future rapid retreat of the Antarctic Ice Sheet, which holds a far greater potential for sea level rise."

James Devitt | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>