Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising tides intensify non-volcanic tremor in Earth's crust

27.11.2007
For more than a decade geoscientists have detected what amount to ultra-slow-motion earthquakes under Western Washington and British Columbia on a regular basis, about every 14 months. Such episodic tremor-and-slip events typically last two to three weeks and can release as much energy as a large earthquake, though they are not felt and cause no damage.

Now University of Washington researchers have found evidence that these slow-slip events are actually affected by the rise and fall of ocean tides.

"There has been some previous evidence of the tidal effect, but the detail is not as great as what we have found," said Justin Rubinstein, a UW postdoctoral researcher in Earth and space sciences.

And while previous research turned up suggestions of a tidal pulse at 12.4 hours, this is the first time that a second pulse, somewhat more difficult to identify, emerged in the evidence at intervals of 24 to 25 hours, he said.

Rubinstein is lead author of a paper that provides details of the findings, published Nov. 22 in Science Express, the online edition of the journal Science. Co-authors are Mario La Rocca of the Istituto Nazionale di Geofisica e Vulcanologia in Italy, and John Vidale, Kenneth Creager and Aaron Wech of the UW.

The most recent tremor-and-slip events in Washington and British Columbia took place in July 2004, September 2005 and January 2007. Before each, researchers deployed seismic arrays, each containing five to 11 separate seismic monitoring stations, to collect more accurate information about the location and nature of the tremors. Four of the arrays were placed on the Olympic Peninsula in Washington and the fifth was on Vancouver Island in British Columbia.

The arrays recorded clear twice-a-day pulsing in the 2004 and 2007 episodes, and similar pulsing occurred in 2005 but was not as clearly identified. The likely source from tidal stresses, the researchers said, would be roughly once- and twice-a-day pulses from the gravitational influence of the sun and moon. The clearest tidal pulse at 12.4 hours coincided with a peak in lunar forcing, while the pulse at 24 to 25 hours was linked to peaks in both lunar and solar influences.

The rising tide appeared to increase the tremor by a factor of 30 percent, though the Earth distortion still was so small that it was undetectable without instruments, said Vidale, a UW professor of Earth and space sciences and director of the Pacific Northwest Seismograph Network.

"We expected that the added water of a rising tide would clamp down on the tremor, but it seems to have had the opposite effect. It's fair to say that we don't understand it," Vidale said.

"Earthquakes don't behave this way," he added. "Most don't care whether the tide is high or low."

The researchers were careful to rule out noise that might have come from human activity. For instance, one of the arrays was near a logging camp and another was near a mine.

"It's pretty impressive how strong a signal those activities can create," Rubinstein said, adding that the slow-slip pulses were recorded when those human activities were at a minimum.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>