Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising tides intensify non-volcanic tremor in Earth's crust

27.11.2007
For more than a decade geoscientists have detected what amount to ultra-slow-motion earthquakes under Western Washington and British Columbia on a regular basis, about every 14 months. Such episodic tremor-and-slip events typically last two to three weeks and can release as much energy as a large earthquake, though they are not felt and cause no damage.

Now University of Washington researchers have found evidence that these slow-slip events are actually affected by the rise and fall of ocean tides.

"There has been some previous evidence of the tidal effect, but the detail is not as great as what we have found," said Justin Rubinstein, a UW postdoctoral researcher in Earth and space sciences.

And while previous research turned up suggestions of a tidal pulse at 12.4 hours, this is the first time that a second pulse, somewhat more difficult to identify, emerged in the evidence at intervals of 24 to 25 hours, he said.

Rubinstein is lead author of a paper that provides details of the findings, published Nov. 22 in Science Express, the online edition of the journal Science. Co-authors are Mario La Rocca of the Istituto Nazionale di Geofisica e Vulcanologia in Italy, and John Vidale, Kenneth Creager and Aaron Wech of the UW.

The most recent tremor-and-slip events in Washington and British Columbia took place in July 2004, September 2005 and January 2007. Before each, researchers deployed seismic arrays, each containing five to 11 separate seismic monitoring stations, to collect more accurate information about the location and nature of the tremors. Four of the arrays were placed on the Olympic Peninsula in Washington and the fifth was on Vancouver Island in British Columbia.

The arrays recorded clear twice-a-day pulsing in the 2004 and 2007 episodes, and similar pulsing occurred in 2005 but was not as clearly identified. The likely source from tidal stresses, the researchers said, would be roughly once- and twice-a-day pulses from the gravitational influence of the sun and moon. The clearest tidal pulse at 12.4 hours coincided with a peak in lunar forcing, while the pulse at 24 to 25 hours was linked to peaks in both lunar and solar influences.

The rising tide appeared to increase the tremor by a factor of 30 percent, though the Earth distortion still was so small that it was undetectable without instruments, said Vidale, a UW professor of Earth and space sciences and director of the Pacific Northwest Seismograph Network.

"We expected that the added water of a rising tide would clamp down on the tremor, but it seems to have had the opposite effect. It's fair to say that we don't understand it," Vidale said.

"Earthquakes don't behave this way," he added. "Most don't care whether the tide is high or low."

The researchers were careful to rule out noise that might have come from human activity. For instance, one of the arrays was near a logging camp and another was near a mine.

"It's pretty impressive how strong a signal those activities can create," Rubinstein said, adding that the slow-slip pulses were recorded when those human activities were at a minimum.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>