Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane bubbling through seafloor creates undersea hills

08.02.2007
According to a recent paper published by MBARI geologists and their colleagues, methane gas bubbling through seafloor sediments has created hundreds of low hills on the floor of the Arctic Ocean. These enigmatic features, which can grow up to 40 meters (130 feet) tall and several hundred meters across, have puzzled scientists ever since they were first discovered in the 1940s.

Writing in the January issue of Geophysical Research Letters, MBARI geologists Charlie Paull and William Ussler and their coauthors described the results of field work they conducted on the Beaufort Sea Shelf, offshore of the north coast of Canada. In this area of year-round sea ice and permafrost, the team spent over a month mapping the seafloor and collecting sediment cores and gas samples from these underwater hills, which they call "pingo-like features."


This conceptual drawing (not to scale) shows Paull's hypothesis that methane gas from deep hydrate deposits could push sediment up from below the ocean bottom to create a pingo-like feature. The gray lines in the background are from a seismic profile through one of these enigmatic features. Image: (c) 2007 MBARI

"Pingos," small, dome-shaped, ice-cored hills, are found in many Arctic regions. "Pingo-like features" are similar in shape and size to pingos on land, but are found underwater, on the continental shelf in several parts of the Arctic. Previous studies have suggested that pingo-like features are pingos that formed on land but were submerged when sea level rose following the end of the last ice age, over 10,000 years ago.

Based on their geologic fieldwork and subsequent chemical analysis of the gas and sediments from eight pingo-like features, Paull and his coauthors propose an alternative hypothesis: Pingo-like features form when methane hydrate (a frozen mixture of gas and seawater) decomposes beneath the seafloor, releasing gas that squeezes deep sediments up onto the seafloor like toothpaste from a tube.

The geologists based this hypothesis on a number of observations and measurements. First, sound waves bounced through the pingo-like features showed that they were not built up from layers, but consist of a jumbled mixture of sediment and small nodules of fresh-water (rather than salt-water) ice. Carbon-14 dating of organic matter in the sediment at the crests of several hills showed that this sediment was deposited before the last ice age, thousands of years before sediments on the surrounding seafloor. Finally, many of the pingo-like features were surrounded by shallow "moats," where the seafloor within a kilometer of the hill had apparently subsided.

Even with evidence that pingo-like features were made of older, deeper sediment that had been pushed up from beneath the seafloor, the geologists still had to figure out what geologic process could generate enough pressure to lift seafloor sediments. The most obvious source of such pressure was methane gas, which the researchers observed bubbling out of the tops of several pingo-like features.

After chemically analyzing this gas, the researchers concluded that it originated as methane hydrate, an ice-like mixture of water and methane that forms within sediments under much of the Arctic seafloor and beneath permafrost areas on land. Methane hydrate can only remain solid at low temperatures and high pressures. Such conditions exist several hundred meters below the seafloor in this part of the Arctic Ocean.

The researchers suggested that such buried hydrates might be decomposing and releasing large amounts of methane gas. This seemed possible because the seafloor in this area has been gradually warming over the last 10,000 years, after being flooded as sea levels rose at the end of the last ice age. Although within a few degrees of freezing, the seawater in this region is at least 10 degrees Centigrade (20 degrees Fahrenheit) warmer than permafrost-filled soil. Thus, when the ice sheets from the last ice age melted and the ocean flooded the continental shelves, it caused the seafloor sediment to become warmer.

Over thousands of years, the scientists believe, this "wave" of warming moved downward through the sediment. Eventually it reached the frozen methane hydrates, hundreds of meters down. Even a slight temperature increase could have caused some of the buried methane hydrates to decompose, releasing methane into the surrounding sediments.

Paull and Ussler's data suggest that this newly released methane migrated sideways under the seafloor, held in place by an impermeable layer of frozen soil that lies between the hydrates and the seafloor. Eventually it collected and moved toward the surface along faults or in other areas where the sediments were relatively weak.

Eventually the extruded sediment collected to form the low undersea hills visible on bathymetric charts. At the same time, areas on either side of the mounds, where much of the gas and sediment originated, slowly collapsed, forming the deeper "moats" observed by the researchers.

According to Paull, "We don't know if this gas and sediment was burped up in a single year, or moved slowly like a glacier." In either case, Paull's data suggest that pingo-like features are growing in response to warming that started thousands of years ago. Thus, their growth is not a result of human-induced global warming. However, Paull's research does show that pingo-like features are still growing and releasing methane today.

Because methane is a potent greenhouse gas, climate scientists would like to know how much is bubbling up from the seafloor worldwide. Future research on methane hydrates and pingo-like features may help address this question. As Paull phrased it, "Pingo-like features are one of the places where we see methane coming up through the seafloor. As yet we don't know how important they are, since we don't know how much gas is coming up in the Arctic as a whole or in other seafloor areas."

This study also provides scientists with clues to how buried methane hydrate deposits might behave in other parts of the world in response to global warming. According to Paull, "One of the questions we're trying to answer is 'What do buried hydrates do when they are suddenly warmed up?' In this case, we have a field experiment that's been going on for thousands of years."

Kim Fulton-Bennett | EurekAlert!
Further information:
http://www.mbari.org
http://www.mbari.org/news/news_releases/2007/paull-plfs.html

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>