Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishbone deforestation pattern affecting environment

12.12.2006
Researchers at the University of Illinois at Urbana-Champaign are studying the environmental impact that unique patterns of deforestation in Rondonia, Brazil, have on the land and climate.

Rondonia is a state in the Amazonian region where the establishment of rural development projects has resulted in the construction of orthogonal road networks. Deforestation along the rapidly expanding network of highways and local roads has created a unique fishbone pattern.

Somnath Baidya Roy, a professor of atmospheric sciences at Illinois, is studying the atmosphere dynamics of fishbone deforestation, and will present his findings at the American Geophysical Union meeting in San Francisco, Dec. 11-15.

“People often relate tropical deforestation to clear-cuts,” Roy said. “Climate models show that clear-cuts, if they happen on a basin-wide scale, will result in decreased rainfall and bring about a drier, more arid landscape. In the case of fishbone patterns, the deforestation is in isolated segments of the landscape, and our models indicate that it results in increased precipitation over these deforested regions.”

Whether there has been a change in the overall amount of precipitation has not been established, but there is definitely evidence for the redistribution of precipitation. Roy attributes this redistribution to “vegetation breezes” that are similar to lake and sea breezes.

A deforested patch is warmer than the neighboring forests. Warm air is lighter and rises, creating a localized low-pressure zone. Cool air then rushes in to fill the void. Because of this convergence, more cumulus clouds and rainfall occur over the deforested patch.

Roy uses a high-resolution computer simulation model to study the effects of deforestation on climate, and the effects that climate change has on the landscape, a process known as “feedback cycle.”

Recent studies have indicated that fishbone deforestation can trigger up to 15 millimeters more rain over pastures, stimulating an increased growth of vegetation in these areas.

“It is very counter-intuitive that in these cases, fishbone deforestation results in a negative feedback-cycle,” Roy said. “It’s negative because it speeds up vegetation recovery and thus offsets the effects of deforestation.”

If the deforestation had resulted in less rainfall, leading to a decrease in plant growth, this would be referred to as a “positive” feedback-cycle.

Roy’s model is high-resolution, resulting in very detailed data. The drawback to this model is that it cannot be carried out for prolonged periods, unlike more conventional climate models, which provide coarser data but can be carried out continuously.

“Our next goal is to correlate my model with other climate models,” Roy said, “so that we may study the longer term aspects of fishbone deforestation, while maintaining the high-resolution.”

Editor’s note: To reach Somnath Baidya Roy, call 217-244-1123; e-mail: sbroy@uiuc.edu.

Somnath Baidya Roy | News Bureau
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>