Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron fused with magnesium: New discovery may explain composition of Earth’s core

13.12.2005


The outer core of the Earth, whose composition until now has been a mystery, may consist of an alloy of iron and magnesium. This discovery by an international team of scientists with members from Linköping University in Sweden, being published in the journal Physical Review Letters, is, among other things, a major step toward being able to predict earthquakes.



In theoretical and experimental studies under extremely high pressure, the team has succeeded in mixing iron and magnesium.

“To be able to model what happens in the interior of the Earth, we have to know the composition of the core,” says Igor Abrikosov, professor of theoretical physics at Linköping University in Sweden and one of the authors of the article being published in Friday’s issue of the journal.


In the Earth’s core the temperature (6,000 degrees C) and pressure (3 million times the pressure of the atmosphere) are so high that it can’t be studied experimentally. However, it is known that it is too light to consist solely of iron, and among other elements, silicone, sulfur, and oxygen have been proposed as being mixed in. On the other hand, magnesium has been excluded even though it is one of the Earth’s most common elements.

“It has been thought that iron and magnesium cannot be mixed in molten form, since the iron atomic volume is too small in relation to the magnesium atomic volume. But if we increase the pressure, the volume diminishes more rapidly in magnesium than in iron,” explains Igor Abrikosov.

The theoretical studies were followed up with a unique experiment in a so-called diamond anvil cell, which can withstand extremely high pressures. It turned out that it was possible to make alloys of iron and magnesium at pressures as low as 200,000 atmospheres.

The findings may also be of great significance in the search for new materials for industrial applications.

Other members of the team behind the article “Beating the miscibility barrier between iron and magnesium by high-pressure alloying” are L. Dubrovinsky, N. Dubrovinskaia , I. Kantor, W. A. Crichton, V. Dmitriev, V. Prakapenka, G. Shen, L. Vitos, R. Ahuja, and B. Johansson. The article is published in Physical Review Letters, vol. 95 no. 24.

Åke Hjelm | alfa
Further information:
http://www.liu.se

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>