Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron fused with magnesium: New discovery may explain composition of Earth’s core

13.12.2005


The outer core of the Earth, whose composition until now has been a mystery, may consist of an alloy of iron and magnesium. This discovery by an international team of scientists with members from Linköping University in Sweden, being published in the journal Physical Review Letters, is, among other things, a major step toward being able to predict earthquakes.



In theoretical and experimental studies under extremely high pressure, the team has succeeded in mixing iron and magnesium.

“To be able to model what happens in the interior of the Earth, we have to know the composition of the core,” says Igor Abrikosov, professor of theoretical physics at Linköping University in Sweden and one of the authors of the article being published in Friday’s issue of the journal.


In the Earth’s core the temperature (6,000 degrees C) and pressure (3 million times the pressure of the atmosphere) are so high that it can’t be studied experimentally. However, it is known that it is too light to consist solely of iron, and among other elements, silicone, sulfur, and oxygen have been proposed as being mixed in. On the other hand, magnesium has been excluded even though it is one of the Earth’s most common elements.

“It has been thought that iron and magnesium cannot be mixed in molten form, since the iron atomic volume is too small in relation to the magnesium atomic volume. But if we increase the pressure, the volume diminishes more rapidly in magnesium than in iron,” explains Igor Abrikosov.

The theoretical studies were followed up with a unique experiment in a so-called diamond anvil cell, which can withstand extremely high pressures. It turned out that it was possible to make alloys of iron and magnesium at pressures as low as 200,000 atmospheres.

The findings may also be of great significance in the search for new materials for industrial applications.

Other members of the team behind the article “Beating the miscibility barrier between iron and magnesium by high-pressure alloying” are L. Dubrovinsky, N. Dubrovinskaia , I. Kantor, W. A. Crichton, V. Dmitriev, V. Prakapenka, G. Shen, L. Vitos, R. Ahuja, and B. Johansson. The article is published in Physical Review Letters, vol. 95 no. 24.

Åke Hjelm | alfa
Further information:
http://www.liu.se

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>