Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun’s direct role in global warming may be underestimated

04.10.2005


Study does not discount the suspected contributions of ’greenhouse gases’ in elevating surface temperatures

At least 10 to 30 percent of global warming measured during the past two decades may be due to increased solar output rather than factors such as increased heat-absorbing carbon dioxide gas released by various human activities, two Duke University physicists report.

The physicists said that their findings indicate that climate models of global warming need to be corrected for the effects of changes in solar activity. However, they emphasized that their findings do not argue against the basic theory that significant global warming is occurring because of carbon dioxide and other "greenhouse" gases.



Nicola Scafetta, an associate research scientist working at Duke’s physics department, and Bruce West, a Duke adjunct physics professor, published their findings online Sept. 28, 2005, in the research journal Geophysical Research Letters.

West is also chief scientist in the mathematical and information sciences directorate of the Army Research Office in Research Triangle Park.

Scafetta’s and West’s study follows a Columbia University researcher’s report of previous errors in the interpretation of data on solar brightness collected by sun-observing satellites.

The Duke physicists also introduce new statistical methods that they assert more accurately describe the atmosphere’s delayed response to solar heating. In addition, these new methods filter out temperature-changing effects not tied to global warming, they write in their paper.

According to Scafetta, records of sunspot activity suggest that solar output has been rising slightly for about 100 years. However, only measurements of what is known as total solar irradiance gathered by satellites orbiting since 1978 are considered scientifically reliable, he said.

But observations over those years were flawed by the space shuttle Challenger disaster, which prevented the launching of a new solar output detecting satellite called ACRIM 2 to replace a previous one called ACRIM 1.

That resulted in a two-year data gap that scientists had to rely on other satellites to try to bridge. "But those data were not as precise as those from ACRIM 1 and ACRIM 2," Scafetta said in an interview.

Nevertheless, several research groups used the combined satellite data to conclude that that there was no increased heating from the Sun to contribute to the global surface warming observed between 1980 and 2002, the authors wrote in their paper.

Lacking a standardized, uninterrupted data stream measuring any rising solar influence, those groups thus surmised that all global temperature increases measured during those years had to be caused by solar heat-trapping "greenhouse" gases such as carbon dioxide, introduced into Earth’s atmosphere by human activities, their paper added.

But a 2003 study by a group headed by Columbia’s Richard Willson, principal investigator of the ACRIM experiments, challenged the previous satellite interpretations of solar output. Willson and his colleagues concluded, rather that their analysis revealed a significant upward trend in average solar luminosity during the period.

Using the Columbia findings as the starting point for their study, Scafetta and West then statistically analyzed how Earth’s atmosphere would respond to slightly stronger solar heating. Importantly, they used an analytical method that could detect the subtle, complex relationships between solar output and terrestrial temperature patterns.

The Duke analyses examined solar changes over a period twice as long -- 22 versus 11 years -- as was previously covered by another group employing a different statistical approach.

"The problem is that Earth’s atmosphere is not in thermodynamic equilibrium with the sun," Scafetta said. "The longer the time period the stronger the effect will be on the atmosphere, because it takes time to adapt."

Using a longer 22 year interval also allowed the Duke physicists to filter out shorter range effects that can influence surface temperatures but are not related to global warming, their paper said. Examples include volcanic eruptions, which can temporarily cool the climate, and ocean current changes such as el Nino that affect global weather patterns.

Applying their analytical method to the solar output estimates by the Columbia group, Scafetta’s and West’s paper concludes that "the sun may have minimally contributed about 10 to 30 percent of the 1980-2002 global surface warming."

This study does not discount that human-linked greenhouse gases contribute to global warming, they stressed. "Those gases would still give a contribution, but not so strong as was thought," Scafetta said.

"We don’t know what the Sun will do in the future," Scafetta added. "For now, if our analysis is correct, I think it is important to correct the climate models so that they include reliable sensitivity to solar activity.

"Once that is done, then it will be possible to better understand what has happened during the past hundred years."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>