Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun’s direct role in global warming may be underestimated

04.10.2005


Study does not discount the suspected contributions of ’greenhouse gases’ in elevating surface temperatures

At least 10 to 30 percent of global warming measured during the past two decades may be due to increased solar output rather than factors such as increased heat-absorbing carbon dioxide gas released by various human activities, two Duke University physicists report.

The physicists said that their findings indicate that climate models of global warming need to be corrected for the effects of changes in solar activity. However, they emphasized that their findings do not argue against the basic theory that significant global warming is occurring because of carbon dioxide and other "greenhouse" gases.



Nicola Scafetta, an associate research scientist working at Duke’s physics department, and Bruce West, a Duke adjunct physics professor, published their findings online Sept. 28, 2005, in the research journal Geophysical Research Letters.

West is also chief scientist in the mathematical and information sciences directorate of the Army Research Office in Research Triangle Park.

Scafetta’s and West’s study follows a Columbia University researcher’s report of previous errors in the interpretation of data on solar brightness collected by sun-observing satellites.

The Duke physicists also introduce new statistical methods that they assert more accurately describe the atmosphere’s delayed response to solar heating. In addition, these new methods filter out temperature-changing effects not tied to global warming, they write in their paper.

According to Scafetta, records of sunspot activity suggest that solar output has been rising slightly for about 100 years. However, only measurements of what is known as total solar irradiance gathered by satellites orbiting since 1978 are considered scientifically reliable, he said.

But observations over those years were flawed by the space shuttle Challenger disaster, which prevented the launching of a new solar output detecting satellite called ACRIM 2 to replace a previous one called ACRIM 1.

That resulted in a two-year data gap that scientists had to rely on other satellites to try to bridge. "But those data were not as precise as those from ACRIM 1 and ACRIM 2," Scafetta said in an interview.

Nevertheless, several research groups used the combined satellite data to conclude that that there was no increased heating from the Sun to contribute to the global surface warming observed between 1980 and 2002, the authors wrote in their paper.

Lacking a standardized, uninterrupted data stream measuring any rising solar influence, those groups thus surmised that all global temperature increases measured during those years had to be caused by solar heat-trapping "greenhouse" gases such as carbon dioxide, introduced into Earth’s atmosphere by human activities, their paper added.

But a 2003 study by a group headed by Columbia’s Richard Willson, principal investigator of the ACRIM experiments, challenged the previous satellite interpretations of solar output. Willson and his colleagues concluded, rather that their analysis revealed a significant upward trend in average solar luminosity during the period.

Using the Columbia findings as the starting point for their study, Scafetta and West then statistically analyzed how Earth’s atmosphere would respond to slightly stronger solar heating. Importantly, they used an analytical method that could detect the subtle, complex relationships between solar output and terrestrial temperature patterns.

The Duke analyses examined solar changes over a period twice as long -- 22 versus 11 years -- as was previously covered by another group employing a different statistical approach.

"The problem is that Earth’s atmosphere is not in thermodynamic equilibrium with the sun," Scafetta said. "The longer the time period the stronger the effect will be on the atmosphere, because it takes time to adapt."

Using a longer 22 year interval also allowed the Duke physicists to filter out shorter range effects that can influence surface temperatures but are not related to global warming, their paper said. Examples include volcanic eruptions, which can temporarily cool the climate, and ocean current changes such as el Nino that affect global weather patterns.

Applying their analytical method to the solar output estimates by the Columbia group, Scafetta’s and West’s paper concludes that "the sun may have minimally contributed about 10 to 30 percent of the 1980-2002 global surface warming."

This study does not discount that human-linked greenhouse gases contribute to global warming, they stressed. "Those gases would still give a contribution, but not so strong as was thought," Scafetta said.

"We don’t know what the Sun will do in the future," Scafetta added. "For now, if our analysis is correct, I think it is important to correct the climate models so that they include reliable sensitivity to solar activity.

"Once that is done, then it will be possible to better understand what has happened during the past hundred years."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Earth Sciences:

nachricht Better model of water under extreme conditions could aid understanding of Earth's mantle
21.06.2018 | University of Chicago

nachricht The Janus head of the South Asian monsoon
21.06.2018 | Max-Planck-Institut für Chemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>