Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New window into ancient ozone holes

10.08.2005


British researchers have hit on a clever way to search for ancient ozone holes and their relationship to mass extinctions: measure the remains of ultraviolet-B absorbing pigments ancient plants left in their fossilized spores and pollen.



To develop the approach, researcher Barry Lomax and his colleagues at the University of Sheffield and other leading UK institutions analyzed spores held in the British Antarctic Survey’s collection from South Georgia Island, a UK territory in the far southwestern corner of the Atlantic Ocean. They discovered that since the 1960s, spores from living land plants have shown a three-fold increase in the concentration of UV-B absorbing pigments to protect themselves against a 14 percent decrease in stratospheric ozone, says Lomax.

"We have initially been investigating whether plants of palaeobotanical significance are capable of adapting to changes in UV-B radiation," said Lomax. In particular, they studied the UV-B response of the club moss Lycopodium magellanicum, a native of South Georgia Island.


"Now that this has been established we are investigating possible changes in terrestrial UV-B flux during the Permian-Triassic boundary (251 million years ago)," said Lomax. That boundary marks the largest mass extinction in the Earth’s history and also coincides with the largest known eruption of lava and potentially ozone-destroying gases - the Siberian Traps.

The latest results from the ongoing work will be presented by Lomax on Wednesday, 10 August, at Earth System Processes 2, a meeting co-convened by the Geological Society and Geological Association of Canada this week in Calgary, Alberta, Canada.

The modern increase in UV-B at South Georgia is the direct result of high latitude springtime ozone destruction in the stratosphere caused by decades of releases of human-made chlorofluorocarbons (CFCs). The situation may have been the same a quarter billion years ago, except that the earlier ozone-destroying chemicals came from the Earth itself.

"Volcanic eruptions can emit gases such as chlorine and bromine that are capable of destroying ozone," said Lomax. The heating of rocks near volcanic flows of the Siberian Traps may also release a wide range of organohalogens thought to be harmful to ozone, he said.

The next step is to search for the chemical remains of the plant pigments in fossilized spores and pollen. "The pigments break down to form compounds that are stable over geological time," said Lomax, "so providing samples have not been subjected to large amounts of heat, the signature should be preserved."

The research is funded by the UK’s Natural Environment Research Council, with the specific aim of finding a way to measure ancient UV-B levels by combining experimental and palaeobotanical investigations.

Ann Cairns | EurekAlert!
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>