Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy: Pressure cooker Earth

22.07.2005


Geothermal heat from a depth of 4,000 metres to generate power in the future



Why roam far afield, when the good is so close at hand? Humankind burns coal, gas and oil to generate energy. It splits atoms, converts sunlight into electricity and tries to capture the wind. Yet, the earth beneath our feet contains energy enough to satisfy even the greatest demand, because 99% of the Earth is hotter that 1000°C, while 99% of the rest is actually hotter than 100°C. Only the Earth’s surface is comparatively cool. The deeper one goes, the warmer it becomes: on average by 3° Celsius per 100 metres. But how can this geothermal heat be brought to the surface? How can it be used to generate electricity? Scientists at the GeoForschungsZentrum Potsdam are studying questions like these.

Steam and sulphur


In the Larderello Valley, Italy’s region of Tuscany has a completely different face to that seen in travel catalogues. Steam hisses, clouds of fog and mist drift across the ground and there’s a smell of sulphur in the air. Larderello is where the idea of generating electrical energy from geothermal heat was born. The year 1904 saw Count Piero Ginori Conti make five light bulbs glow by means of volcanic steam. Today, the Italians generate 750 megawatts of power from Larderello’s geothermal power stations that meanwhile operate without sulphur precipitation: that is enough energy to light up around 12.5m 60-watt light bulbs. By contrast, one of Germany’s most modern lignite mines, "Schwarze Pumpe" south of Cottbus, has two blocks which each generate 800 megawatts of power.

Larderello has remained an exception. Other than landscapes like those of Iceland, where volcanic geothermal heat is present very close to the surface, this energy is hard to reach. The first German geothermal power station went into operation in autumn 2003 in Neustadt-Glewe in the state of Mecklenburg-West Pomerania. It uses 98° hot water from 2,200 metres below the surface to generate power. However, it only manages around 200 kilowatts, less than 1/20th of the largest wind turbines. In the summer, the publicly-funded plant supplies up to 500 households with power, in the winter it provides the hot water to heat the little town.

The water cycle

At their geothermal plant in Groß Schönebeck, just north of Berlin, the researchers at Potsdam are pursuing the same approach as at the Neustadt-Glewe power station, only this time with a 150°C reservoir temperature. They use two drill holes to create a so-called thermal water cycle. The temperature of the water drawn from these hydrothermal reservoirs is just under 100° at Neustadt-Glewe (from a depth of 2.2 km) and 150° at Groß Schönebeck (from a depth of 4.3 km). Once at the surface, the energy is drawn from the water by means of a heat exchanger. The water is sufficiently hot to generate electrical power. Then, the water is fed back underground through the second drill hole, where this returning water increases the pressure in the reservoir so that the water can be drawn to the surface again through the first drill hole and so on. The advantages of this method are that there is no need to transport it over long distances on the surface where heat could be lost unused. Furthermore, the same water can be used time and time again, without producing any wastewater or residues.

"Stimulating" the rock

This water cycle has not yet been turned into reality. The difficulty lies in the fact that the deep-lying rock is normally not permeable enough to allow the water to circulate. In many experiments, the scientists from Potsdam pressed water into the rock at such high pressures that existing cracks and cavities were artificially enlarged. This gradually makes the rock more permeable. This so-called stimulation technique, known from the oil industry, was used in and developed for hydrothermal geothermics for the first time.

"After a series of stimulation experiments, we have now reached a degree of productivity which makes the generation of power from geothermal heat interesting for the energy industry as well, even under the conditions prevailing here," explains Dr. Ernst Huenges, Head of the Geothermics Section at the GeoForschungsZentrum Potsdam.

Creating the cycle

This is why the next step involves the drilling of a second deep hole, around one kilometre away from the first one. "Once we’ve done this, we want to spend several months carrying out experimental studies on whether the system of cracks we created in the deep-lying rock is suitable for running the water cycle long-term," says Huenges. It is important to prove this sustainability. "Because the investment in this form of power generation is only worthwhile if production can be assured long-term," explains Huenges. Together with an industrial partner, the Potsdam researchers eventually plan to build a geothermal power station at the Groß Schönebeck site that will serve as a demonstration plant and will facilitate process-technology and energy-industry studies.

Incidentally, investors in geothermics receive a government-guaranteed payment for the power they generate in their plants, as governed by the Renewable Energies Act. In 2000, the German government included geothermics in this act and once again improved the conditions in the 2004 amendment to the act. Federal Environment Minister Jürgen Trittin sees geothermal heat as "an exciting chapter in our future energy supply, an energy supply without climate and environmental problems, without marine pollution, without war for the last resources, and without the unforeseeable dangers of radioactivity."

Providing planning certainty for geothermal power generation

The research work done so far at Groß Schönebeck makes Huenges optimistic for the future of geothermics in Germany. Because in the past it was fraught with major cost risks: kilometre-deep drill holes cost several million euros. The danger of a failure is much smaller, when the rock can be changed by means of stimulation technology to allow the water cycle to work reliably. In addition, the ground beneath the Potsdam researchers’ test site is typical of that of Central Europe; the experimental studies done here can with great probability also be transferred to and applied in other regions. And this means good prospects for the geothermal heat that is so close at hand being able to establish itself in the medium term as a renewable energy source.

| alfa
Further information:
http://www.helmholtz.de

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>