Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth lightens up

06.05.2005


After 30 years of dimming, the planet’s surface is brightening, an international collaboration concludes this week in Science magazine

Earth’s surface has been getting brighter for more than a decade, a reversal from a dimming trend that may accelerate warming at the surface and unmask the full effect of greenhouse warming, according to an exhaustive new study of the solar energy that reaches land. Ever since a report in the late 1980s uncovered a 4 to 6 percent decline of sunlight reaching the planet’s surface over 30 years since 1960, atmospheric scientists have been trying out theories about why this would be and how it would relate to the greenhouse effect, the warming caused by the buildup of carbon dioxide and other gasses that trap heat in the atmosphere.

Meanwhile, a group led by Martin Wild at the Swiss Federal Institute of Technology in Zurich, home of the international Baseline Surface Radiation Network (BSRN) archive, had gone to work collecting surface measurements and crunching numbers. "BSRN didn’t get started until the early ’90s and worked hard to update the earlier archive," said Charles N. Long, senior scientist at the Department of Energy’s Pacific Northwest National Laboratory and co-author of a BSRN report in this week’s issue (Friday, May 6) of the journal Science. "When we looked at the more recent data, lo and behold, the trend went the other way," said Long, who conducted the work under the auspices of DOE’s Atmospheric Radiation Measurement (ARM) program.



Data analysis capabilities developed by ARM research were crucial in the study, which reveals the planet’s surface has brightened by about 4 percent the past decade. The brightening trend is corroborated by other data, including satellite analyses that are the subject of another paper in this week’s Science.

Sunlight that isn’t absorbed or reflected by clouds as it plunges earthward will heat the surface. Because the atmosphere includes greenhouse gasses, solar warming and greenhouse warming are related. "The atmosphere is heated from the bottom up, and more solar energy at the surface means we might finally see the increases in temperature that we expected to see with global greenhouse warming," Long said.

In fact, he said, many believe that we have already been seeing those effects in our most temperature-sensitive climates, with the melting of polar ice and high altitude glaciers.

The report’s authors stopped short of attributing a cause to the cycle of surface dimming and brightening, but listed such suspects as changes in the number and composition of aerosols—liquid and solid particles suspended in air—and how aerosols affect the character of clouds. Over the past decade, the ARM program has built a network of instrumentation sites to sample cloud characteristics and energy transfer in a variety of climates, from tropical to polar. "The continuous, sophisticated data from these sites will be crucial for determining the causes," Long said.

Long also pointed out that 70 percent of the planet’s surface is ocean, for which we have no long-term surface brightening or dimming measurements.

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs more than 4,000 staff, has a $650 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>