Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low level of extinction during ice age linked to adaptability

26.04.2005


A Johns Hopkins University graduate student may have figured out why rates of extinction were so low for many of the major groups of marine life during one of the greatest ice ages of them all, which occurred from about 330 million to 290 million years ago, late in the Paleozoic Era.



The likely answer: because those aquatic life forms that did survive during this era were singularly equipped to endure severe fluctuations in temperature and sea levels. Those that were not died in a mass extinction that heralded the ice age’s onset. "These results not only clue us in to what happened many millions of years ago, but they also have implications for understanding the modern marine ecosystem," said Matthew Powell, a doctoral candidate in the Morton K. Blaustein Department of Earth and Planetary Sciences at The Johns Hopkins University’s Zanvyl Krieger School of Arts and Sciences. His paper on the topic appears in the May issue of Geology, published by the Geological Society of America.

"If the patterns I detected also are true for the modern ice age -- and other researchers’ results suggest that they may be -- then modern marine life ought to be relatively resistant to extinction," he said. "Yet species are dying off at an alarming rate. It may be that humans have altered the environment so much that we are now causing the extinction of species that should be relatively immune. Though it’s difficult to say exactly what the implications are for the world we live in, what I can say is that it is worrisome."


Powell looked at extinctions during an age when glaciers reached to within 35 degrees of the equator, roughly as far south as a line between present-day Raleigh, Memphis and Albuquerque or nearly as far north as Buenos Aires. Powell tackled the question of why extinction rates were so low during that great ice age by closely examining geographic patterns of evolution and extinction in brachiopods, simple shelled sea creatures that were abundant and well-fossilized during the Paleozoic. He constructed a database that charted latitudinal patterns of evolution and extinction through the late Paleozoic. "This database is the first ever; no other database of this kind exists for any interval of geologic time, from which to study geographic patterns of macroevolution," Powell said.

According to Powell’s analysis, brachiopods that lived primarily near the equator suffered the highest extinction rates and did not re-appear in great numbers until the ice age ended. "The absence of these particular brachiopods during the ice age left the oceans populated almost entirely with those who lived over a wider geographic area," Powell said. "What I found is that the uniquely low global rates of evolution and extinction for brachiopods during the late Paleozoic ice age were caused by the loss and lack of recovery of those that had existed in narrow latitudinal ranges."

Powell believes that those brachiopods that existed within narrow latitudinal ranges became victims of the extremes in the annual minimum and maximum temperatures that were typical of the late Paleozoic. During that era, "seasonality" -- the difference between annual temperatures’ highs and lows -- was amplified by the presence of glaciers. "I’ve suggested that those brachiopods which eventually became extinct had adapted only to small temperature changes, and thus did not survive," he said. "The other competing hypothesis is that large fluctuations of sea level, driven by the melting and reforming of glaciers, disrupted marine communities, and the ones which survived were those able to adjust.

Lisa De Nike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>