Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low level of extinction during ice age linked to adaptability

26.04.2005


A Johns Hopkins University graduate student may have figured out why rates of extinction were so low for many of the major groups of marine life during one of the greatest ice ages of them all, which occurred from about 330 million to 290 million years ago, late in the Paleozoic Era.



The likely answer: because those aquatic life forms that did survive during this era were singularly equipped to endure severe fluctuations in temperature and sea levels. Those that were not died in a mass extinction that heralded the ice age’s onset. "These results not only clue us in to what happened many millions of years ago, but they also have implications for understanding the modern marine ecosystem," said Matthew Powell, a doctoral candidate in the Morton K. Blaustein Department of Earth and Planetary Sciences at The Johns Hopkins University’s Zanvyl Krieger School of Arts and Sciences. His paper on the topic appears in the May issue of Geology, published by the Geological Society of America.

"If the patterns I detected also are true for the modern ice age -- and other researchers’ results suggest that they may be -- then modern marine life ought to be relatively resistant to extinction," he said. "Yet species are dying off at an alarming rate. It may be that humans have altered the environment so much that we are now causing the extinction of species that should be relatively immune. Though it’s difficult to say exactly what the implications are for the world we live in, what I can say is that it is worrisome."


Powell looked at extinctions during an age when glaciers reached to within 35 degrees of the equator, roughly as far south as a line between present-day Raleigh, Memphis and Albuquerque or nearly as far north as Buenos Aires. Powell tackled the question of why extinction rates were so low during that great ice age by closely examining geographic patterns of evolution and extinction in brachiopods, simple shelled sea creatures that were abundant and well-fossilized during the Paleozoic. He constructed a database that charted latitudinal patterns of evolution and extinction through the late Paleozoic. "This database is the first ever; no other database of this kind exists for any interval of geologic time, from which to study geographic patterns of macroevolution," Powell said.

According to Powell’s analysis, brachiopods that lived primarily near the equator suffered the highest extinction rates and did not re-appear in great numbers until the ice age ended. "The absence of these particular brachiopods during the ice age left the oceans populated almost entirely with those who lived over a wider geographic area," Powell said. "What I found is that the uniquely low global rates of evolution and extinction for brachiopods during the late Paleozoic ice age were caused by the loss and lack of recovery of those that had existed in narrow latitudinal ranges."

Powell believes that those brachiopods that existed within narrow latitudinal ranges became victims of the extremes in the annual minimum and maximum temperatures that were typical of the late Paleozoic. During that era, "seasonality" -- the difference between annual temperatures’ highs and lows -- was amplified by the presence of glaciers. "I’ve suggested that those brachiopods which eventually became extinct had adapted only to small temperature changes, and thus did not survive," he said. "The other competing hypothesis is that large fluctuations of sea level, driven by the melting and reforming of glaciers, disrupted marine communities, and the ones which survived were those able to adjust.

Lisa De Nike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>