Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canada’s Shrinking Ice Caps

10.03.2005


Earth’s ice-covered polar regions help to keep our climate cool and hold tremendous amounts of fresh water locked up in their glaciers, ice caps, and ice sheets. The ice contained in these vast freshwater reservoirs is the equivalent of nearly 220 feet of sea level. However, when most people think of polar ice, they usually do not think of Canada, the location of only a small percentage of the Arctic’s polar land ice.


During the research campaigns, first in 1995 and then in 2000, Abdalati and his colleagues flew the NASA P-3 aircraft over the Canada Arctic Archipelago. Shown here is the location map of the 2000 flight lines (repeat surveys of the 1995 lines) where flights were conducted out of Pangnirtung, Clyde River, Grise Fiord, and Eureka. Weather station data used in this analysis were from Eureka, Alert, Resolute, Clyde River, Iqaluit, Egedesminde, and Dewar Lakes. Click on image for a larger view. Image credit: Waleed Abdalati, NASA Goddard Space Flight Center.


This image from the NASA P-3 research aircraft was taken after surveying the Barnes ice cap on Baffin Island. Image credit: James Yungel, NASA Wallops flight Facility.



Recent research conducted by NASA scientists has revealed that Canada’s ice caps and glaciers have important connections to Earth’s changing climate, and they have a strong potential for contributing to sea level rise.

Canada’s Arctic region is covered by approximately 150,000 square kilometers (93,205 square miles) of ice. While this land area is tiny compared to Antarctica’s 113.5 million square kilometers (70.5 million square miles), and Greenland’s 1.7 million square kilometers (1.05 million square miles) of ice coverage, it is still quite significant. In the next 100 years, melting glaciers and ice caps outside of Greenland and Antarctica, a significant portion of which includes those in Canada, are expected to raise global sea levels by 20 to 40 centimeters (7.9 to 15.8 inches).


Waleed Abdalati, Head of the Cryospheric Sciences Branch at NASA’s Goddard Space Flight Center (GSFC), Greenbelt, Md. published research recently in the Journal of Geophysical Research showing that Canada’s Arctic ice is one of the more significant and immediate sources of world-wide changes in sea levels.

Abdalati and his colleagues say that Canada’s Arctic ice is important because the wide area covered by these ice caps and the dramatic changes that have taken place in the Arctic climate in recent years. Studying this region will help researchers understand how much and in what ways Arctic glaciers and ice caps are contributing to sea level rise.

"The ice-covered parts of the world, and, in particular, of the Arctic are considered to be very sensitive to change," said Abdalati.

To study Canada’s ice caps, Abdalati and his colleagues used a laser altimeter mounted on an airplane to measure the precise elevation of the ice surface. By making these measurements over many of the Canadian ice caps once in 1995 and repeating them again in 2000, they were able to determine how much the thickness of the ice sheet changed. By combining this information with temperature and precipitation data from weather stations nearby, and several decades of direct measurement of ice growth and shrinkage on certain ice caps, they were able to put these changes in their appropriate climatological context.

From their research, Abdalati and his colleagues found an increasing trend in both annual temperatures during the second half of the twentieth century. At the same time records showed that accumulation was approximately 15 percent higher during the 1995-2000 time period than for the 1951-1980 period (a data set that is often used as a climatological mean to which new measurements are historically compared). These characteristics contributed to changes in the ice caps in the late 1990s.

The researchers found that in areas where the ice melts very little, there was slight thickening of some ice caps, which could be due to accumulation from increased snowfall; however, overall they found that the ice caps and glaciers were thinning at the lower elevations where melt occurs. In some locations, where the changes were most substantial, this thinning appears to be a continuation of the retreat or melting of glaciers that followed the end of the Little Ice Age -- a period 150 years ago when the Earth was cooler and glaciers were more prevalent. However, the researchers also attributed the melting of the ice caps to the short-term warming trend of the late 1990s, which appears to have been amplified in the Arctic. They determined that the ice loss associated with these combined effects contributed to 0.065 millimeters (0.002 inches) per year to sea level rise during the 1995-2000 time period.

"This research is significant because it is the first large-scale assessment of Canada’s ice cap contribution to sea level rise, which has never been put into a comprehensive picture before," said Abdalati. "The ice caps in the Canadian Arctic are shrinking, and though they are relatively small compared to areas like Greenland and Antarctica, their short-term contributions to sea level cannot be ignored."

Katie Lorentz | EurekAlert!
Further information:
http://www.larc.nasa.gov

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>