Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Well-preserved layer of material ejected from Chesapeake Bay meteor-strike discovered

24.08.2004


People in Georgia’s Dodge and Bleckley counties have for years picked up small pieces of natural glass called "Georgiaites," which were produced by an unknown asteroid or comet impact millions of years ago. Just where these small, translucent green objects came from, however, was unclear.



Now researchers at the University of Georgia, studying a kaolin mine in Warren County, have found a layer of tiny grains, which indicate that the grains and the Georgiaites were products of a recently discovered impact that left a huge crater beneath the waters of the Chesapeake Bay. "We knew we had these tektites here, but we’d never found them in place," said Michael Roden, a geologist and part of the research team. "We believe this layer is further evidence that the Chesapeake Bay impact was an enormous event with widespread consequences."

The research was published in the August issue of the journal Geology.


The work was spearheaded by UGA graduate student Scott Harris (now with Brown University) in collaboration with Roden, Paul Schroeder and Steven Holland of UGA, Ed Albin of Fernbank and Mack Duncan of J.M. Huber Corporation.

Tektites are brown to green glassy objects, generally small and rounded, and thought to be of extraterrestrial origin. The only other state in the United States where tektites have been found in abundance is Texas. Some 1,700 have been found in Georgia to date, and potassium-argon geochronology has dated them to around 35 million years of age.

The Chesapeake Bay impact crater was only discovered about a decade ago, but before the current discovery, there was no known deposition layer from it extant, and it was unclear whether Georgiaites were the result of the cataclysmic collision of the Chesapeake Bay bolide with the Earth. ("Bolide" is a generic term for an impacting body.)

The now-unused kaolin mine in Warren County where the discovery was made was near the sea’s edge in ancient times. This former shore, now across the central part of Georgia, is more or less coincident with the Fall Line, and marks the place where ancient seas lapped the land. The impact in the Chesapeake Bay clearly caused a huge amount of material, both from the Earth and the asteroid, to become airborne, and the layer -- discovered at a depth of 25 feet in the kaolin mine -- was probably laid down by the event.

It was an active time: In the period between 34 million and 37 million years ago, at least five comets and/or asteroids collided with the Earth. Since some of the events may have caused climate alterations and caused at least regional disruptions of ecosystems, knowing more about the ejecta from the impacts is important.

The layer reported in Geology is perhaps the most easily accessible, undisturbed layer of materials that probably came from the Chesapeake Bay impact and can therefore add knowledge about that event. The search for the layer, led by Harris, led to the discovery of so-called shocked quartz -- grains whose physical "thumbprint" mark them as having originated from the extremely high pressures characteristic of an impact event.

Just how big the explosion was when this celestial visitor hit the Earth is unclear, but Roden said it was many times bigger than such events as the explosions of Mt. St. Helen’s or even Krakatoa.

Michael Roden | EurekAlert!
Further information:
http://www.uga.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>