Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ocean dye to help Rutgers scientists trace Hudson River’s path miles into the Atlantic


Shipboard marine scientists from Rutgers, The State University of New Jersey, will release a nontoxic red dye into the Atlantic Ocean off New Jersey during the week of May 2 to help reveal the contents and fate of Hudson River water after it joins the Atlantic.

The dye release is the first of three experiments in Rutgers’ ongoing study of the Hudson River Plume – the mix of river water and substances that flow into the ocean at a rate of 500 billion gallons per day. Preliminary studies indicate that the plume tends to sweep southward along the New Jersey coast.

The exact location and time of the dye release will be determined by the position of the plume and other conditions. Robert J. Chant, professor of physical oceanography with Rutgers’ Institute of Marine and Coastal Sciences (IMCS), said he hopes to release the dye sometime Sunday or Monday in an area a few miles southeast of Sandy Hook.

The dye initially will be visible on the ocean as a red patch, perhaps a mile or more long, Chant said. "It will then disperse and gradually become invisible to the human eye, but remain detectable by our sensors. Essentially we’re tagging a piece of the ocean and following it."

Chant and a crew of fellow oceanographers plan to follow the flow of the dye on a research vessel for about five days, and possibly 100 or miles more. Throughout the voyage, they will be testing the water to increase their knowledge about where the plume goes and what it contains.

A live streaming video and audio feed of experiment activities and scientists’ commentary during the cruise will available online at IMCS will take aerial photos of the dye patch and then post and later archive the images online.

The five-year study, called the Lagrangian Transport and Transformation Experiment (LaTTE), also involves the ongoing use of unmanned submarines, satellites, coastal radar and other technologies. It is funded through a $4.2 million grant from the National Science Foundation.

As the study progresses, Rutgers scientists will add the data to computer models for predicting plume behavior and content under a wide range of conditions. Such information will be useful, for example, in predicting potentially dangerous algae blooms along the coast and making decisions about sewage disposal.

Chant is the principal investigator on the study. He is working along with fellow IMCS scientists Scott M. Glenn, Oscar Schofield and John L. Wilkin, and John R. Reinfelder of Rutgers’ environmental sciences department.

  • The dye consists of about 100 gallons of Rhodamine WT, a nontoxic liquid red dye commonly used in water-tracing studies. It is detected optically by monitoring a characteristic reflection. Rhodamine can be detected down to 10 parts per trillion, or the equivalent of 1/50th of an ounce dropped in an Olympic-size swimming pool.

  • While following the dye patches, researchers will run many tests to evaluate how nitrogen, lead, cadmium, mercury and other substances are transported by the plume at different depths and under different conditions. They will study microscopic phytoplankton and zooplankton, and research how metals and nutrients enter the base of the food chain.

  • "Lagrangian" in the title of the study comes from Joseph-Louis Lagrange, an 18th century French mathematician who developed formulas for studying the motion of fluids while following their flow.

  • The LaTTE acronym will have special meaning for coffee lovers. One of the chemicals to be monitored in the Hudson River Plume is caffeine. It passes though sewage treatment plants unchanged, and because it has no oceanic source, it can be used as an additional tracer.

  • Shipboard testing will provide real-time results, allowing scientists aboard the vessel to produce computer images of the Hudson River Plume as they travel.

  • The model will evolve as test cruises continue through 2006. Analysis of the comprehensive plume model is expected to be completed by 2008.

  • Computer modeling in LaTTE will tackle such complex issues as turbulent mixing and photosynthesis in microscopic ocean plants. The rotation of the earth will figure in the model because it causes ocean water in the northern hemisphere to turn to the right. This phenomenon, called the Coriolis effect, drives the plume up against the New Jersey coast.

  • In previous testing, water from the Hudson River Plume was detected in the ocean as far south as Cape May.

Joseph Blumberg | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>