Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean dye to help Rutgers scientists trace Hudson River’s path miles into the Atlantic

28.04.2004


Shipboard marine scientists from Rutgers, The State University of New Jersey, will release a nontoxic red dye into the Atlantic Ocean off New Jersey during the week of May 2 to help reveal the contents and fate of Hudson River water after it joins the Atlantic.


The dye release is the first of three experiments in Rutgers’ ongoing study of the Hudson River Plume – the mix of river water and substances that flow into the ocean at a rate of 500 billion gallons per day. Preliminary studies indicate that the plume tends to sweep southward along the New Jersey coast.

The exact location and time of the dye release will be determined by the position of the plume and other conditions. Robert J. Chant, professor of physical oceanography with Rutgers’ Institute of Marine and Coastal Sciences (IMCS), said he hopes to release the dye sometime Sunday or Monday in an area a few miles southeast of Sandy Hook.

The dye initially will be visible on the ocean as a red patch, perhaps a mile or more long, Chant said. "It will then disperse and gradually become invisible to the human eye, but remain detectable by our sensors. Essentially we’re tagging a piece of the ocean and following it."



Chant and a crew of fellow oceanographers plan to follow the flow of the dye on a research vessel for about five days, and possibly 100 or miles more. Throughout the voyage, they will be testing the water to increase their knowledge about where the plume goes and what it contains.

A live streaming video and audio feed of experiment activities and scientists’ commentary during the cruise will available online at http://marine.rutgers.edu/cool/latte. IMCS will take aerial photos of the dye patch and then post and later archive the images online.

The five-year study, called the Lagrangian Transport and Transformation Experiment (LaTTE), also involves the ongoing use of unmanned submarines, satellites, coastal radar and other technologies. It is funded through a $4.2 million grant from the National Science Foundation.

As the study progresses, Rutgers scientists will add the data to computer models for predicting plume behavior and content under a wide range of conditions. Such information will be useful, for example, in predicting potentially dangerous algae blooms along the coast and making decisions about sewage disposal.

Chant is the principal investigator on the study. He is working along with fellow IMCS scientists Scott M. Glenn, Oscar Schofield and John L. Wilkin, and John R. Reinfelder of Rutgers’ environmental sciences department.

Facts
  • The dye consists of about 100 gallons of Rhodamine WT, a nontoxic liquid red dye commonly used in water-tracing studies. It is detected optically by monitoring a characteristic reflection. Rhodamine can be detected down to 10 parts per trillion, or the equivalent of 1/50th of an ounce dropped in an Olympic-size swimming pool.

  • While following the dye patches, researchers will run many tests to evaluate how nitrogen, lead, cadmium, mercury and other substances are transported by the plume at different depths and under different conditions. They will study microscopic phytoplankton and zooplankton, and research how metals and nutrients enter the base of the food chain.

  • "Lagrangian" in the title of the study comes from Joseph-Louis Lagrange, an 18th century French mathematician who developed formulas for studying the motion of fluids while following their flow.

  • The LaTTE acronym will have special meaning for coffee lovers. One of the chemicals to be monitored in the Hudson River Plume is caffeine. It passes though sewage treatment plants unchanged, and because it has no oceanic source, it can be used as an additional tracer.

  • Shipboard testing will provide real-time results, allowing scientists aboard the vessel to produce computer images of the Hudson River Plume as they travel.

  • The model will evolve as test cruises continue through 2006. Analysis of the comprehensive plume model is expected to be completed by 2008.

  • Computer modeling in LaTTE will tackle such complex issues as turbulent mixing and photosynthesis in microscopic ocean plants. The rotation of the earth will figure in the model because it causes ocean water in the northern hemisphere to turn to the right. This phenomenon, called the Coriolis effect, drives the plume up against the New Jersey coast.

  • In previous testing, water from the Hudson River Plume was detected in the ocean as far south as Cape May.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Earth Sciences:

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>