Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean dye to help Rutgers scientists trace Hudson River’s path miles into the Atlantic

28.04.2004


Shipboard marine scientists from Rutgers, The State University of New Jersey, will release a nontoxic red dye into the Atlantic Ocean off New Jersey during the week of May 2 to help reveal the contents and fate of Hudson River water after it joins the Atlantic.


The dye release is the first of three experiments in Rutgers’ ongoing study of the Hudson River Plume – the mix of river water and substances that flow into the ocean at a rate of 500 billion gallons per day. Preliminary studies indicate that the plume tends to sweep southward along the New Jersey coast.

The exact location and time of the dye release will be determined by the position of the plume and other conditions. Robert J. Chant, professor of physical oceanography with Rutgers’ Institute of Marine and Coastal Sciences (IMCS), said he hopes to release the dye sometime Sunday or Monday in an area a few miles southeast of Sandy Hook.

The dye initially will be visible on the ocean as a red patch, perhaps a mile or more long, Chant said. "It will then disperse and gradually become invisible to the human eye, but remain detectable by our sensors. Essentially we’re tagging a piece of the ocean and following it."



Chant and a crew of fellow oceanographers plan to follow the flow of the dye on a research vessel for about five days, and possibly 100 or miles more. Throughout the voyage, they will be testing the water to increase their knowledge about where the plume goes and what it contains.

A live streaming video and audio feed of experiment activities and scientists’ commentary during the cruise will available online at http://marine.rutgers.edu/cool/latte. IMCS will take aerial photos of the dye patch and then post and later archive the images online.

The five-year study, called the Lagrangian Transport and Transformation Experiment (LaTTE), also involves the ongoing use of unmanned submarines, satellites, coastal radar and other technologies. It is funded through a $4.2 million grant from the National Science Foundation.

As the study progresses, Rutgers scientists will add the data to computer models for predicting plume behavior and content under a wide range of conditions. Such information will be useful, for example, in predicting potentially dangerous algae blooms along the coast and making decisions about sewage disposal.

Chant is the principal investigator on the study. He is working along with fellow IMCS scientists Scott M. Glenn, Oscar Schofield and John L. Wilkin, and John R. Reinfelder of Rutgers’ environmental sciences department.

Facts
  • The dye consists of about 100 gallons of Rhodamine WT, a nontoxic liquid red dye commonly used in water-tracing studies. It is detected optically by monitoring a characteristic reflection. Rhodamine can be detected down to 10 parts per trillion, or the equivalent of 1/50th of an ounce dropped in an Olympic-size swimming pool.

  • While following the dye patches, researchers will run many tests to evaluate how nitrogen, lead, cadmium, mercury and other substances are transported by the plume at different depths and under different conditions. They will study microscopic phytoplankton and zooplankton, and research how metals and nutrients enter the base of the food chain.

  • "Lagrangian" in the title of the study comes from Joseph-Louis Lagrange, an 18th century French mathematician who developed formulas for studying the motion of fluids while following their flow.

  • The LaTTE acronym will have special meaning for coffee lovers. One of the chemicals to be monitored in the Hudson River Plume is caffeine. It passes though sewage treatment plants unchanged, and because it has no oceanic source, it can be used as an additional tracer.

  • Shipboard testing will provide real-time results, allowing scientists aboard the vessel to produce computer images of the Hudson River Plume as they travel.

  • The model will evolve as test cruises continue through 2006. Analysis of the comprehensive plume model is expected to be completed by 2008.

  • Computer modeling in LaTTE will tackle such complex issues as turbulent mixing and photosynthesis in microscopic ocean plants. The rotation of the earth will figure in the model because it causes ocean water in the northern hemisphere to turn to the right. This phenomenon, called the Coriolis effect, drives the plume up against the New Jersey coast.

  • In previous testing, water from the Hudson River Plume was detected in the ocean as far south as Cape May.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>