Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA’s SORCE satellite celebrates one year of operations


Having marked its first anniversary on orbit, NASA’s Solar Radiation and Climate Experiment (SORCE) satellite has hit its stride. In concert with other satellites, SORCE’s observations of the sun’s brightness are helping researchers better understand climate change, climate prediction, atmospheric ozone, the sunburn-causing ultraviolet-B radiation and space weather.


SORCE maintains a 24-year legacy of solar output monitoring that should help explain and predict the effect of the Sun on the Earth’s atmosphere and climate. Credit: NASA / LASP

In fall 2003, SORCE was fortunate to see and measure exceptionally high levels of the sun’s activities. In late October and November the sun sent solar flares and coronal mass ejections hurtling Earthward, disrupting satellites and other transmissions, triggering an intense geomagnetic storm, and enabling sightings of the northern lights as far south as Arkansas, Texas and Oklahoma.

The third most powerful solar flare ever observed in X-rays, high-energy photons with very short wavelengths, erupted from Sunspot 486 October 28, 2003, at approximately 6 a.m. Eastern Standard Time. The same spot released a large X11 flare on the afternoon of October 29. As the sunspot moved across the face of the sun, total solar brightness decreased by 0.3 percent.

SORCE tracked the decreases in Total Solar Irradiance (TSI) and the increases in X-rays, as well as changes in the other parts of the solar spectrum. SORCE’s suite of instruments measures solar brightness in soft X-ray bands and at wavelengths from ultraviolet through the visible and near-infrared spectrum. This is the most comprehensive dataset ever collected of the complex brightness changes that occur in the solar spectrum during a major eruptive event.

Having accurate knowledge of the sun’s brightness variations on all time scales, from flares to centuries, at all wavelengths heating the Earth’s atmosphere, land and oceans is essential to understand, model and predict impacts of the sun on Earth.

Two of the SORCE instruments, the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), will ultimately be part of the operational measurements made by the National Polar-orbiting Operational Environmental Satellite System (NPOESS) satellites beginning in 2013. Solar irradiance has been monitored since the 1970s to create a long-term record for study by researchers.

"The spacecraft and instruments have all been performing beautifully since launch, and the new solar data exceed all of our expectations," said Gary Rottman, SORCE Principal Investigator at University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado. "The sun also cooperated by putting on an unusual display of intense activity in late October that provided some of the largest sunspots ever recorded and produced major flares surpassing all previous observations. These unexpected phenomena will help us better understand how the sun functions and how it influences the terrestrial environment."

"For the very first time we have observations capable of characterizing simultaneously the variations in the total solar irradiance and in the visible and near infrared part of the solar electromagnetic spectrum that provides the primary energy to the Earth’s surface," said Dr. Judith Lean, Research Physicist at the Naval Research Laboratories and a member of the National Academy of Sciences. "Simple models exist of solar spectrum variability, which general circulation models use to simulate climate response to solar forcing. SORCE data already indicate the models need to be revised at infrared wavelengths; they promise unprecedented new understanding of the mechanisms of solar spectral-irradiance variability and their possible climatic impacts."

SORCE is a joint partnership between NASA and LASP. As a principal investigator-led mission, NASA provided management oversight and engineering support. Scientists and engineers at the University of Colorado designed, built, calibrated and tested the four science instruments on the satellite. The Mission Operations Center and the Science Operations Center are both located at the University.

Lynn Chandler | GSFC
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>