Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s SORCE satellite celebrates one year of operations

20.02.2004


Having marked its first anniversary on orbit, NASA’s Solar Radiation and Climate Experiment (SORCE) satellite has hit its stride. In concert with other satellites, SORCE’s observations of the sun’s brightness are helping researchers better understand climate change, climate prediction, atmospheric ozone, the sunburn-causing ultraviolet-B radiation and space weather.


SORCE SPACECRAFT

SORCE maintains a 24-year legacy of solar output monitoring that should help explain and predict the effect of the Sun on the Earth’s atmosphere and climate. Credit: NASA / LASP



In fall 2003, SORCE was fortunate to see and measure exceptionally high levels of the sun’s activities. In late October and November the sun sent solar flares and coronal mass ejections hurtling Earthward, disrupting satellites and other transmissions, triggering an intense geomagnetic storm, and enabling sightings of the northern lights as far south as Arkansas, Texas and Oklahoma.

The third most powerful solar flare ever observed in X-rays, high-energy photons with very short wavelengths, erupted from Sunspot 486 October 28, 2003, at approximately 6 a.m. Eastern Standard Time. The same spot released a large X11 flare on the afternoon of October 29. As the sunspot moved across the face of the sun, total solar brightness decreased by 0.3 percent.


SORCE tracked the decreases in Total Solar Irradiance (TSI) and the increases in X-rays, as well as changes in the other parts of the solar spectrum. SORCE’s suite of instruments measures solar brightness in soft X-ray bands and at wavelengths from ultraviolet through the visible and near-infrared spectrum. This is the most comprehensive dataset ever collected of the complex brightness changes that occur in the solar spectrum during a major eruptive event.

Having accurate knowledge of the sun’s brightness variations on all time scales, from flares to centuries, at all wavelengths heating the Earth’s atmosphere, land and oceans is essential to understand, model and predict impacts of the sun on Earth.

Two of the SORCE instruments, the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), will ultimately be part of the operational measurements made by the National Polar-orbiting Operational Environmental Satellite System (NPOESS) satellites beginning in 2013. Solar irradiance has been monitored since the 1970s to create a long-term record for study by researchers.

"The spacecraft and instruments have all been performing beautifully since launch, and the new solar data exceed all of our expectations," said Gary Rottman, SORCE Principal Investigator at University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado. "The sun also cooperated by putting on an unusual display of intense activity in late October that provided some of the largest sunspots ever recorded and produced major flares surpassing all previous observations. These unexpected phenomena will help us better understand how the sun functions and how it influences the terrestrial environment."

"For the very first time we have observations capable of characterizing simultaneously the variations in the total solar irradiance and in the visible and near infrared part of the solar electromagnetic spectrum that provides the primary energy to the Earth’s surface," said Dr. Judith Lean, Research Physicist at the Naval Research Laboratories and a member of the National Academy of Sciences. "Simple models exist of solar spectrum variability, which general circulation models use to simulate climate response to solar forcing. SORCE data already indicate the models need to be revised at infrared wavelengths; they promise unprecedented new understanding of the mechanisms of solar spectral-irradiance variability and their possible climatic impacts."

SORCE is a joint partnership between NASA and LASP. As a principal investigator-led mission, NASA provided management oversight and engineering support. Scientists and engineers at the University of Colorado designed, built, calibrated and tested the four science instruments on the satellite. The Mission Operations Center and the Science Operations Center are both located at the University.

Lynn Chandler | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2004/0219sorce.html

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>