Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amazon Basin sediment accumulation influenced by La Niña

24.11.2003


Enormous quantities of sediment are deposited in the flood-plains traversed by the Amazon and its tributaries in times of flooding. Scientists have hitherto considered the sedimentation rate to be generally constant with time.



Research conducted jointly by the IRD, the Universities of Washington1 and California2 and the Bolivian National Meteorology and Hydrology Service (SENAMHI) of La Paz, on two Bolivian rivers shows on the contrary that such events are irregular and less frequent than has been thought. These results, just published in Nature, emphasize that, in this Andean-Amazonian foreland, sedimentation is closely dependent on the flood amplitude, in turn linked to climatic variability, and particularly to La Niña, the cold phase of the ENSO (El Niño Southern Oscillation).

Continental-scale rivers can transport enormous sediment loads. In periods of flood, a proportion of these is deposited on flood-plains. In the Amazon Basin, crossed by the Earth’s largest river, great volumes of such sequestered sediment accumulations occur. This is especially so in the Llanos, the Bolivian lowland flood-plains which stretch from the foot of the Andes. An estimated 100 to 150 million tonnes of sediment are deposited each year respectively in the Rio Beni and the Rio Mamore flood-plains. These are the two Andean tributaries of the Rio Madeira, one of the Amazon’s main tributaries and source of more than half the sediment load transported by that river.


The inter-annual sediment accumulation rate has up to now been considered to be generally constant. Now a study conducted in the floodplain which receives these two tributaries refutes this. It is the first to reveal an episodic pattern. During the past century, large sediment accumulation events indeed occurred only quite infrequently (11 events recorded over 90 years of analysis), corresponding to an average recurrence interval of eight years.

These results were the fruit of investigations forming part of the HyBAm (Hydrogéodynamique du Bassin amazonien) programme, conducted by a joint research team involving the IRD (working in the combined research unit UMR LMTG-CNRS-IRD- Paul Sabatier University of Toulouse), the Universities of Washington1 and California2, and the Bolivian National Meteorology and Hydrology Service (SENAMHI) of La Paz. 210Pb3 activity profile analysis on 300 sediment cores sampled from the Beni and Mamore basin flood-plains, interpreted using a new geochronological model developed by the University of Washington,1 enabled them to date discrete sedimentary packages to near-annual resolution. They revealed evidence of an episodic pattern in the main sedimentation events.

Why does sediment accumulation in this part of the Amazon Basin show an episodic pattern? Climatic variability plays a prime role. The team established a significant correlation between these periods of mass sediment deposition and La Niña, the cold phase of the ENSO (El Niño Southern Oscillation) climatic cycle. During most La Niña years over the past century, the Andean relief has been subjected to torrential rainfall generating fierce flooding and intensive mechanical erosion on the Andean slopes. Recordings from a hydrological station situated at the foot of the Andes showed this.

Measurements were continued and followed up in the Hybam programme. When these floods occur, huge volumes of sediment are eroded from the Andean piedmont sub-basins and transported towards the floodplain. For a proportion of these sediments to have been deposited there (for example up to 40% in the Beni Basin flood-plain), the researchers estimate that the water-level rise, during these years of high sedimentation rate, must have been extremely rapid, in excess of 8 000 m3/s. The floods would then have reached the force necessary to cut crevasses in small natural levees along the main stems of the Beni and Mamore rivers and inundate a large expanse of the plain.

With the new data the research team also studied the century-long depositional history in the floodplain of mercury associated with fine particles and the role of these in trapping metal elements transported by the great Amazonian rivers and their tributaries. Also brought to light was a strong increase, over the past 30 years, of mercury concentrations in the sediment particles deposited in the Rio Beni plain. This corresponds to the recent "boom" in gold prospecting, now at an end, but also to the colonization of new arable land on the steep flanks of the Andean piedmont.

Marie Guillaume | alfa
Further information:
http://www.ird.fr/fr/actualites/fiches/

More articles from Earth Sciences:

nachricht Small- and mid-sized cities particularly vulnerable
29.09.2016 | Universität Stuttgart

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>