Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amazon Basin sediment accumulation influenced by La Niña

24.11.2003


Enormous quantities of sediment are deposited in the flood-plains traversed by the Amazon and its tributaries in times of flooding. Scientists have hitherto considered the sedimentation rate to be generally constant with time.



Research conducted jointly by the IRD, the Universities of Washington1 and California2 and the Bolivian National Meteorology and Hydrology Service (SENAMHI) of La Paz, on two Bolivian rivers shows on the contrary that such events are irregular and less frequent than has been thought. These results, just published in Nature, emphasize that, in this Andean-Amazonian foreland, sedimentation is closely dependent on the flood amplitude, in turn linked to climatic variability, and particularly to La Niña, the cold phase of the ENSO (El Niño Southern Oscillation).

Continental-scale rivers can transport enormous sediment loads. In periods of flood, a proportion of these is deposited on flood-plains. In the Amazon Basin, crossed by the Earth’s largest river, great volumes of such sequestered sediment accumulations occur. This is especially so in the Llanos, the Bolivian lowland flood-plains which stretch from the foot of the Andes. An estimated 100 to 150 million tonnes of sediment are deposited each year respectively in the Rio Beni and the Rio Mamore flood-plains. These are the two Andean tributaries of the Rio Madeira, one of the Amazon’s main tributaries and source of more than half the sediment load transported by that river.


The inter-annual sediment accumulation rate has up to now been considered to be generally constant. Now a study conducted in the floodplain which receives these two tributaries refutes this. It is the first to reveal an episodic pattern. During the past century, large sediment accumulation events indeed occurred only quite infrequently (11 events recorded over 90 years of analysis), corresponding to an average recurrence interval of eight years.

These results were the fruit of investigations forming part of the HyBAm (Hydrogéodynamique du Bassin amazonien) programme, conducted by a joint research team involving the IRD (working in the combined research unit UMR LMTG-CNRS-IRD- Paul Sabatier University of Toulouse), the Universities of Washington1 and California2, and the Bolivian National Meteorology and Hydrology Service (SENAMHI) of La Paz. 210Pb3 activity profile analysis on 300 sediment cores sampled from the Beni and Mamore basin flood-plains, interpreted using a new geochronological model developed by the University of Washington,1 enabled them to date discrete sedimentary packages to near-annual resolution. They revealed evidence of an episodic pattern in the main sedimentation events.

Why does sediment accumulation in this part of the Amazon Basin show an episodic pattern? Climatic variability plays a prime role. The team established a significant correlation between these periods of mass sediment deposition and La Niña, the cold phase of the ENSO (El Niño Southern Oscillation) climatic cycle. During most La Niña years over the past century, the Andean relief has been subjected to torrential rainfall generating fierce flooding and intensive mechanical erosion on the Andean slopes. Recordings from a hydrological station situated at the foot of the Andes showed this.

Measurements were continued and followed up in the Hybam programme. When these floods occur, huge volumes of sediment are eroded from the Andean piedmont sub-basins and transported towards the floodplain. For a proportion of these sediments to have been deposited there (for example up to 40% in the Beni Basin flood-plain), the researchers estimate that the water-level rise, during these years of high sedimentation rate, must have been extremely rapid, in excess of 8 000 m3/s. The floods would then have reached the force necessary to cut crevasses in small natural levees along the main stems of the Beni and Mamore rivers and inundate a large expanse of the plain.

With the new data the research team also studied the century-long depositional history in the floodplain of mercury associated with fine particles and the role of these in trapping metal elements transported by the great Amazonian rivers and their tributaries. Also brought to light was a strong increase, over the past 30 years, of mercury concentrations in the sediment particles deposited in the Rio Beni plain. This corresponds to the recent "boom" in gold prospecting, now at an end, but also to the colonization of new arable land on the steep flanks of the Andean piedmont.

Marie Guillaume | alfa
Further information:
http://www.ird.fr/fr/actualites/fiches/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>