Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isotopes from feathers reveal bird migration

06.11.2003


Using naturally occurring patterns of stable-isotopes created by weather and plants, Jason Duxbury of the University of Alberta and his colleagues are tracking the migration routes of birds of prey. Their work on the summer origins of migrating and wintering Peregrine Falcons and Burrowing Owls has shed new light on what has previously been the secret, non-breeding half of the birds’ lives.



By analyzing stable isotopes of hydrogen, carbon, and nitrogen in bird feathers, Duxbury has been able to trace Burrowing Owls wintering grounds in southern Texas and central Mexico, as well as migrating Peregrine Falcons caught on the gulf coast of Texas, back to their breeding grounds in Canada.

The principle behind the work is simple: birds are what they eat. And what birds eat while growing feathers on the breeding grounds contains isotopes of hydrogen, carbon, and nitrogen. These vary in predictable patterns across North America.


Duxbury will be presenting a paper on his work on Wednesday, November 5, at the annual meeting of the Geological Society of America in Seattle, WA. Scientists there are exploring the evolving interface between isotope geochemistry and ecology.

Hydrogen and its heavier version, the isotope deuterium, are both naturally found in molecules of rain water. But as the cycle of evaporation and precipitation repeats across North America and over mountainous regions, the heavier deuterium isotopes get left behind. That creates well-mapped hydrogen/deuterium trends across the continent, Duxbury explains.

"There is a well known gradient of depleting deuterium/hydrogen ratios from the Gulf of Mexico and the Atlantic Ocean across the eastern part of North America," said Duxbury. As you get near mountains there is also a noticeable elevation effect that reflects how changes in elevation also cause precipitation cycles.

The hydrogen isotope signature of animals is essentially the isotope signature found in the water and food they eat. Furthermore, the isotope signature found at the bottom of the food chains can be passed up to the top of food chains. The result is that isotopic signatures in the feathers of the top predators reflect the area where the food was consumed while the feathers were grown.

Carbon isotopes, also found in feathers, vary with latitude due to different growing conditions for plants across the continent. Even nitrogen isotopes can help track birds, though nitrogen isotopes variations are not found in predictable patterns. The application of nitrogen-rich fertilizers in agricultural areas can also alter nitrogen isotope ratios, Duxbury explains.

To collect the feathers for analysis, Duxbury and his colleagues rely on other researchers across North America. "Since 1995 I’ve had other researchers who were banding birds gather feathers all across North America," Duxbury said.

In order to get a local isotope baseline for a bird population the researchers first gather feathers from nestlings at their nest sites. Then they gather feathers from birds on migration or on their wintering grounds to trace them back to the isotope baseline based on the nestlings.

In the case of Burrowing Owls, the stable isotope technique has traced unbanded owls wintering in central Mexico back to Canadian breeding populations, said Duxbury. Subsequent analyses have also revealed that Burrowing Owls disperse more widely between breeding seasons than previously thought. That discovery, in turn, can be applied to population models used in the conservation of Burrowing Owls.

This relatively new technique will not replace banding, says Duxbury, since it cannot trace a bird to an exact location. However, the recovery of a banded bird is very rare event, and so it takes decades to accumulate data. Stable-isotope analysis is providing similar dispersal and migration data, but at a far greater rate. In essence, every bird that is captured for a feather sample is equivalent to a band recovery, Duxbury says.

"Essentially, it’s not as good as getting a band return, which gives you A to B," says Duxbury. "You can’t say exactly where a bird’s origin was, but you can narrow it down to a region. For instance, with an isotope signature we can get it back to southern Alberta, whereas a band can get it to an exact nest location."

Satellite telemetry is by far the most accurate method of tracking birds. However, it comes with a hefty price. In addition, technology has not developed satellite transmitters small enough for Burrowing Owls, says Duxbury.

Ann Cairns | EurekAlert!
Further information:
http://gsa.confex.com/gsa/2003AM/finalprogram/abstract_66548.htm
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>