Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isotopes from feathers reveal bird migration

06.11.2003


Using naturally occurring patterns of stable-isotopes created by weather and plants, Jason Duxbury of the University of Alberta and his colleagues are tracking the migration routes of birds of prey. Their work on the summer origins of migrating and wintering Peregrine Falcons and Burrowing Owls has shed new light on what has previously been the secret, non-breeding half of the birds’ lives.



By analyzing stable isotopes of hydrogen, carbon, and nitrogen in bird feathers, Duxbury has been able to trace Burrowing Owls wintering grounds in southern Texas and central Mexico, as well as migrating Peregrine Falcons caught on the gulf coast of Texas, back to their breeding grounds in Canada.

The principle behind the work is simple: birds are what they eat. And what birds eat while growing feathers on the breeding grounds contains isotopes of hydrogen, carbon, and nitrogen. These vary in predictable patterns across North America.


Duxbury will be presenting a paper on his work on Wednesday, November 5, at the annual meeting of the Geological Society of America in Seattle, WA. Scientists there are exploring the evolving interface between isotope geochemistry and ecology.

Hydrogen and its heavier version, the isotope deuterium, are both naturally found in molecules of rain water. But as the cycle of evaporation and precipitation repeats across North America and over mountainous regions, the heavier deuterium isotopes get left behind. That creates well-mapped hydrogen/deuterium trends across the continent, Duxbury explains.

"There is a well known gradient of depleting deuterium/hydrogen ratios from the Gulf of Mexico and the Atlantic Ocean across the eastern part of North America," said Duxbury. As you get near mountains there is also a noticeable elevation effect that reflects how changes in elevation also cause precipitation cycles.

The hydrogen isotope signature of animals is essentially the isotope signature found in the water and food they eat. Furthermore, the isotope signature found at the bottom of the food chains can be passed up to the top of food chains. The result is that isotopic signatures in the feathers of the top predators reflect the area where the food was consumed while the feathers were grown.

Carbon isotopes, also found in feathers, vary with latitude due to different growing conditions for plants across the continent. Even nitrogen isotopes can help track birds, though nitrogen isotopes variations are not found in predictable patterns. The application of nitrogen-rich fertilizers in agricultural areas can also alter nitrogen isotope ratios, Duxbury explains.

To collect the feathers for analysis, Duxbury and his colleagues rely on other researchers across North America. "Since 1995 I’ve had other researchers who were banding birds gather feathers all across North America," Duxbury said.

In order to get a local isotope baseline for a bird population the researchers first gather feathers from nestlings at their nest sites. Then they gather feathers from birds on migration or on their wintering grounds to trace them back to the isotope baseline based on the nestlings.

In the case of Burrowing Owls, the stable isotope technique has traced unbanded owls wintering in central Mexico back to Canadian breeding populations, said Duxbury. Subsequent analyses have also revealed that Burrowing Owls disperse more widely between breeding seasons than previously thought. That discovery, in turn, can be applied to population models used in the conservation of Burrowing Owls.

This relatively new technique will not replace banding, says Duxbury, since it cannot trace a bird to an exact location. However, the recovery of a banded bird is very rare event, and so it takes decades to accumulate data. Stable-isotope analysis is providing similar dispersal and migration data, but at a far greater rate. In essence, every bird that is captured for a feather sample is equivalent to a band recovery, Duxbury says.

"Essentially, it’s not as good as getting a band return, which gives you A to B," says Duxbury. "You can’t say exactly where a bird’s origin was, but you can narrow it down to a region. For instance, with an isotope signature we can get it back to southern Alberta, whereas a band can get it to an exact nest location."

Satellite telemetry is by far the most accurate method of tracking birds. However, it comes with a hefty price. In addition, technology has not developed satellite transmitters small enough for Burrowing Owls, says Duxbury.

Ann Cairns | EurekAlert!
Further information:
http://gsa.confex.com/gsa/2003AM/finalprogram/abstract_66548.htm
http://www.geosociety.org

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>