Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isotopes from feathers reveal bird migration

06.11.2003


Using naturally occurring patterns of stable-isotopes created by weather and plants, Jason Duxbury of the University of Alberta and his colleagues are tracking the migration routes of birds of prey. Their work on the summer origins of migrating and wintering Peregrine Falcons and Burrowing Owls has shed new light on what has previously been the secret, non-breeding half of the birds’ lives.



By analyzing stable isotopes of hydrogen, carbon, and nitrogen in bird feathers, Duxbury has been able to trace Burrowing Owls wintering grounds in southern Texas and central Mexico, as well as migrating Peregrine Falcons caught on the gulf coast of Texas, back to their breeding grounds in Canada.

The principle behind the work is simple: birds are what they eat. And what birds eat while growing feathers on the breeding grounds contains isotopes of hydrogen, carbon, and nitrogen. These vary in predictable patterns across North America.


Duxbury will be presenting a paper on his work on Wednesday, November 5, at the annual meeting of the Geological Society of America in Seattle, WA. Scientists there are exploring the evolving interface between isotope geochemistry and ecology.

Hydrogen and its heavier version, the isotope deuterium, are both naturally found in molecules of rain water. But as the cycle of evaporation and precipitation repeats across North America and over mountainous regions, the heavier deuterium isotopes get left behind. That creates well-mapped hydrogen/deuterium trends across the continent, Duxbury explains.

"There is a well known gradient of depleting deuterium/hydrogen ratios from the Gulf of Mexico and the Atlantic Ocean across the eastern part of North America," said Duxbury. As you get near mountains there is also a noticeable elevation effect that reflects how changes in elevation also cause precipitation cycles.

The hydrogen isotope signature of animals is essentially the isotope signature found in the water and food they eat. Furthermore, the isotope signature found at the bottom of the food chains can be passed up to the top of food chains. The result is that isotopic signatures in the feathers of the top predators reflect the area where the food was consumed while the feathers were grown.

Carbon isotopes, also found in feathers, vary with latitude due to different growing conditions for plants across the continent. Even nitrogen isotopes can help track birds, though nitrogen isotopes variations are not found in predictable patterns. The application of nitrogen-rich fertilizers in agricultural areas can also alter nitrogen isotope ratios, Duxbury explains.

To collect the feathers for analysis, Duxbury and his colleagues rely on other researchers across North America. "Since 1995 I’ve had other researchers who were banding birds gather feathers all across North America," Duxbury said.

In order to get a local isotope baseline for a bird population the researchers first gather feathers from nestlings at their nest sites. Then they gather feathers from birds on migration or on their wintering grounds to trace them back to the isotope baseline based on the nestlings.

In the case of Burrowing Owls, the stable isotope technique has traced unbanded owls wintering in central Mexico back to Canadian breeding populations, said Duxbury. Subsequent analyses have also revealed that Burrowing Owls disperse more widely between breeding seasons than previously thought. That discovery, in turn, can be applied to population models used in the conservation of Burrowing Owls.

This relatively new technique will not replace banding, says Duxbury, since it cannot trace a bird to an exact location. However, the recovery of a banded bird is very rare event, and so it takes decades to accumulate data. Stable-isotope analysis is providing similar dispersal and migration data, but at a far greater rate. In essence, every bird that is captured for a feather sample is equivalent to a band recovery, Duxbury says.

"Essentially, it’s not as good as getting a band return, which gives you A to B," says Duxbury. "You can’t say exactly where a bird’s origin was, but you can narrow it down to a region. For instance, with an isotope signature we can get it back to southern Alberta, whereas a band can get it to an exact nest location."

Satellite telemetry is by far the most accurate method of tracking birds. However, it comes with a hefty price. In addition, technology has not developed satellite transmitters small enough for Burrowing Owls, says Duxbury.

Ann Cairns | EurekAlert!
Further information:
http://gsa.confex.com/gsa/2003AM/finalprogram/abstract_66548.htm
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>