Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrous oxide record sheds light on glacial carbon dioxide

15.08.2003


A 106,000-year-long record of nitrous oxide concentrations and a shorter record of nitrogen and oxygen isotopes show that both marine and terrestrial nitrous oxide production increased in unison and effectively by the same proportional amount during the end of the last glacial period, according to Penn State researchers.



Equal terrestrial and marine production of nitrous oxide also suggest that increased storage of carbon in the oceans was not the cause of low atmospheric carbon dioxide during ancient glacial periods, the researchers report in today’s (Aug. 15) issue of Science.

“Nitrous oxide is a greenhouse gas, but there is so little of it in the atmosphere, that it hardly contributes to climate change through changes in the radiation budget,” says Dr. Todd Sowers, research associate in geosciences. “Changes in nitrous oxide loading can, however, provide clues about systems that control carbon dioxide in the atmosphere.”


Sowers, working with Dr. Richard B. Alley, the Evan Pugh professor of geosciences, and Jennifer Jubenville, former graduate student, looked at nitrous oxide from the Greenland Ice Core Project II ice core to catalog atmospheric nitrous oxide concentrations through time.

“This is a new record of concentration variations back this far, only a small portion had been done before” says Sowers. “We found a 40 percent increase in the concentration of nitrous oxide in the atmosphere as the Earth warmed at the end of the last glacial period.”

The concentration data alone shows how much nitrous oxide was in the atmosphere at any particular time. It cannot, however, suggest how much of that gas came from the oceans or land. The researchers also looked at an ice core from the Taylor Dome, Antarctica, to create a 30,000-year history of the isotopic composition of the nitrogen and oxygen in the nitrous oxide.

Bacteria on land and in the oceans produce nitrous oxide in one of two ways. Ocean bacteria tend to create nitrous oxide that has more of the heavier isotopes of nitrogen and oxygen, while terrestrial bacteria tend to produce nitrous oxide with the lighter atoms. By looking at proportions of isotopes in the trapped gases, the researchers could determine how much was made on land and how much in the oceans.

“Before we had the isotope records, common wisdom suggested changes in terrestrial emission were probably the major player responsible for the observed concentration changes,” says Sowers. “Our isotope data, however, show that both oceanic and terrestrial emissions changed in roughly the same proportion throughout the last 30,000 years.”

Carbon dioxide in the atmosphere hits lows during glacial periods and some researchers have suggested that increased productivity in the glacial oceans could have removed carbon dioxide from the atmosphere. If the oceans behaved as they do today, then increased oceanic productivity during the glacial period would have produced elevated oceanic nitrous oxide production. However, if the relationship between terrestrial and marine nitrous oxide did not change, then this cannot be an explanation for the low levels of carbon dioxide in the atmosphere during glacial periods.

“When we thought terrestrial emissions were the dominant control on atmospheric nitrous oxide concentrations, then this hypothesis could have been true,” says Sowers. “Now that we know that the land and oceans contributed equally, we have to look for another explanation for the low carbon dioxide levels.”

A’ndrea Messer | Pennstate Un iversity
Further information:
http://live.psu.edu/story/3770

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>