Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrous oxide record sheds light on glacial carbon dioxide

15.08.2003


A 106,000-year-long record of nitrous oxide concentrations and a shorter record of nitrogen and oxygen isotopes show that both marine and terrestrial nitrous oxide production increased in unison and effectively by the same proportional amount during the end of the last glacial period, according to Penn State researchers.



Equal terrestrial and marine production of nitrous oxide also suggest that increased storage of carbon in the oceans was not the cause of low atmospheric carbon dioxide during ancient glacial periods, the researchers report in today’s (Aug. 15) issue of Science.

“Nitrous oxide is a greenhouse gas, but there is so little of it in the atmosphere, that it hardly contributes to climate change through changes in the radiation budget,” says Dr. Todd Sowers, research associate in geosciences. “Changes in nitrous oxide loading can, however, provide clues about systems that control carbon dioxide in the atmosphere.”


Sowers, working with Dr. Richard B. Alley, the Evan Pugh professor of geosciences, and Jennifer Jubenville, former graduate student, looked at nitrous oxide from the Greenland Ice Core Project II ice core to catalog atmospheric nitrous oxide concentrations through time.

“This is a new record of concentration variations back this far, only a small portion had been done before” says Sowers. “We found a 40 percent increase in the concentration of nitrous oxide in the atmosphere as the Earth warmed at the end of the last glacial period.”

The concentration data alone shows how much nitrous oxide was in the atmosphere at any particular time. It cannot, however, suggest how much of that gas came from the oceans or land. The researchers also looked at an ice core from the Taylor Dome, Antarctica, to create a 30,000-year history of the isotopic composition of the nitrogen and oxygen in the nitrous oxide.

Bacteria on land and in the oceans produce nitrous oxide in one of two ways. Ocean bacteria tend to create nitrous oxide that has more of the heavier isotopes of nitrogen and oxygen, while terrestrial bacteria tend to produce nitrous oxide with the lighter atoms. By looking at proportions of isotopes in the trapped gases, the researchers could determine how much was made on land and how much in the oceans.

“Before we had the isotope records, common wisdom suggested changes in terrestrial emission were probably the major player responsible for the observed concentration changes,” says Sowers. “Our isotope data, however, show that both oceanic and terrestrial emissions changed in roughly the same proportion throughout the last 30,000 years.”

Carbon dioxide in the atmosphere hits lows during glacial periods and some researchers have suggested that increased productivity in the glacial oceans could have removed carbon dioxide from the atmosphere. If the oceans behaved as they do today, then increased oceanic productivity during the glacial period would have produced elevated oceanic nitrous oxide production. However, if the relationship between terrestrial and marine nitrous oxide did not change, then this cannot be an explanation for the low levels of carbon dioxide in the atmosphere during glacial periods.

“When we thought terrestrial emissions were the dominant control on atmospheric nitrous oxide concentrations, then this hypothesis could have been true,” says Sowers. “Now that we know that the land and oceans contributed equally, we have to look for another explanation for the low carbon dioxide levels.”

A’ndrea Messer | Pennstate Un iversity
Further information:
http://live.psu.edu/story/3770

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>