Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrous oxide record sheds light on glacial carbon dioxide

15.08.2003


A 106,000-year-long record of nitrous oxide concentrations and a shorter record of nitrogen and oxygen isotopes show that both marine and terrestrial nitrous oxide production increased in unison and effectively by the same proportional amount during the end of the last glacial period, according to Penn State researchers.



Equal terrestrial and marine production of nitrous oxide also suggest that increased storage of carbon in the oceans was not the cause of low atmospheric carbon dioxide during ancient glacial periods, the researchers report in today’s (Aug. 15) issue of Science.

“Nitrous oxide is a greenhouse gas, but there is so little of it in the atmosphere, that it hardly contributes to climate change through changes in the radiation budget,” says Dr. Todd Sowers, research associate in geosciences. “Changes in nitrous oxide loading can, however, provide clues about systems that control carbon dioxide in the atmosphere.”


Sowers, working with Dr. Richard B. Alley, the Evan Pugh professor of geosciences, and Jennifer Jubenville, former graduate student, looked at nitrous oxide from the Greenland Ice Core Project II ice core to catalog atmospheric nitrous oxide concentrations through time.

“This is a new record of concentration variations back this far, only a small portion had been done before” says Sowers. “We found a 40 percent increase in the concentration of nitrous oxide in the atmosphere as the Earth warmed at the end of the last glacial period.”

The concentration data alone shows how much nitrous oxide was in the atmosphere at any particular time. It cannot, however, suggest how much of that gas came from the oceans or land. The researchers also looked at an ice core from the Taylor Dome, Antarctica, to create a 30,000-year history of the isotopic composition of the nitrogen and oxygen in the nitrous oxide.

Bacteria on land and in the oceans produce nitrous oxide in one of two ways. Ocean bacteria tend to create nitrous oxide that has more of the heavier isotopes of nitrogen and oxygen, while terrestrial bacteria tend to produce nitrous oxide with the lighter atoms. By looking at proportions of isotopes in the trapped gases, the researchers could determine how much was made on land and how much in the oceans.

“Before we had the isotope records, common wisdom suggested changes in terrestrial emission were probably the major player responsible for the observed concentration changes,” says Sowers. “Our isotope data, however, show that both oceanic and terrestrial emissions changed in roughly the same proportion throughout the last 30,000 years.”

Carbon dioxide in the atmosphere hits lows during glacial periods and some researchers have suggested that increased productivity in the glacial oceans could have removed carbon dioxide from the atmosphere. If the oceans behaved as they do today, then increased oceanic productivity during the glacial period would have produced elevated oceanic nitrous oxide production. However, if the relationship between terrestrial and marine nitrous oxide did not change, then this cannot be an explanation for the low levels of carbon dioxide in the atmosphere during glacial periods.

“When we thought terrestrial emissions were the dominant control on atmospheric nitrous oxide concentrations, then this hypothesis could have been true,” says Sowers. “Now that we know that the land and oceans contributed equally, we have to look for another explanation for the low carbon dioxide levels.”

A’ndrea Messer | Pennstate Un iversity
Further information:
http://live.psu.edu/story/3770

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>