Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrous oxide record sheds light on glacial carbon dioxide

15.08.2003


A 106,000-year-long record of nitrous oxide concentrations and a shorter record of nitrogen and oxygen isotopes show that both marine and terrestrial nitrous oxide production increased in unison and effectively by the same proportional amount during the end of the last glacial period, according to Penn State researchers.



Equal terrestrial and marine production of nitrous oxide also suggest that increased storage of carbon in the oceans was not the cause of low atmospheric carbon dioxide during ancient glacial periods, the researchers report in today’s (Aug. 15) issue of Science.

“Nitrous oxide is a greenhouse gas, but there is so little of it in the atmosphere, that it hardly contributes to climate change through changes in the radiation budget,” says Dr. Todd Sowers, research associate in geosciences. “Changes in nitrous oxide loading can, however, provide clues about systems that control carbon dioxide in the atmosphere.”


Sowers, working with Dr. Richard B. Alley, the Evan Pugh professor of geosciences, and Jennifer Jubenville, former graduate student, looked at nitrous oxide from the Greenland Ice Core Project II ice core to catalog atmospheric nitrous oxide concentrations through time.

“This is a new record of concentration variations back this far, only a small portion had been done before” says Sowers. “We found a 40 percent increase in the concentration of nitrous oxide in the atmosphere as the Earth warmed at the end of the last glacial period.”

The concentration data alone shows how much nitrous oxide was in the atmosphere at any particular time. It cannot, however, suggest how much of that gas came from the oceans or land. The researchers also looked at an ice core from the Taylor Dome, Antarctica, to create a 30,000-year history of the isotopic composition of the nitrogen and oxygen in the nitrous oxide.

Bacteria on land and in the oceans produce nitrous oxide in one of two ways. Ocean bacteria tend to create nitrous oxide that has more of the heavier isotopes of nitrogen and oxygen, while terrestrial bacteria tend to produce nitrous oxide with the lighter atoms. By looking at proportions of isotopes in the trapped gases, the researchers could determine how much was made on land and how much in the oceans.

“Before we had the isotope records, common wisdom suggested changes in terrestrial emission were probably the major player responsible for the observed concentration changes,” says Sowers. “Our isotope data, however, show that both oceanic and terrestrial emissions changed in roughly the same proportion throughout the last 30,000 years.”

Carbon dioxide in the atmosphere hits lows during glacial periods and some researchers have suggested that increased productivity in the glacial oceans could have removed carbon dioxide from the atmosphere. If the oceans behaved as they do today, then increased oceanic productivity during the glacial period would have produced elevated oceanic nitrous oxide production. However, if the relationship between terrestrial and marine nitrous oxide did not change, then this cannot be an explanation for the low levels of carbon dioxide in the atmosphere during glacial periods.

“When we thought terrestrial emissions were the dominant control on atmospheric nitrous oxide concentrations, then this hypothesis could have been true,” says Sowers. “Now that we know that the land and oceans contributed equally, we have to look for another explanation for the low carbon dioxide levels.”

A’ndrea Messer | Pennstate Un iversity
Further information:
http://live.psu.edu/story/3770

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>