Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellite flies high to monitor sun’s influence on ozone

15.11.2002


In October, the Upper Atmosphere Research Satellite (UARS) completed the first measurement of the solar ultraviolet radiation spectrum over the duration of an 11 year solar cycle, a period marked by cyclical shifts in the Sun’s activity. This long measurement record by two instruments aboard UARS will give researchers better insight into how fluctuations in the Sun’s energy affect ozone and the Earth’s climate. In turn, the dataset gives scientists tools to document the influence of man-made chemicals on ozone loss.



Though mission success was initially declared only 18 months after its launch in September 1991, UARS has continued to track ozone levels and atmospheric gases that react with ozone. The satellite has now also recorded the Sun’s influence on ozone and other gases over an entire solar cycle.

During the 11-year solar cycle the Sun undergoes periodic changes in activity from the "solar maximum," to a period of quiet called the "solar minimum." During the solar maximum there are many sunspots, solar flares, and coronal mass ejections, which can affect communications and the atmosphere here on Earth.


"Having a complete solar cycle of data provides information necessary to distinguish the natural variations in the Earth’s atmosphere from man-made variations," said Charles Jackman, UARS Project Scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md.

"UARS has lasted so long that we now have an 11 year mission with a single set of observations spanning the entire solar cycle," said Gary Rottman, a senior scientist at the University of Colorado and Principal Investigator for the SOLar Stellar InterComparison Experiment (SOLSTICE) instrument on UARS.

This complete solar cycle UV radiation dataset provides key measurements toward better determination of the roles of natural and man-made influences on ozone.

Also, by observing a full solar cycle, scientists hope to use the additional data to better understand the Sun’s behavior.

Observatories on the Earth have found fewer sunspots in this solar cycle than the last one, but UARS measurements indicate the amount of UV radiation that struck Earth’s atmosphere during each solar maximum was about the same.

"The expected correlation between sunspot activity and UV irradiance over the long term was not found," said Linton Floyd, a researcher working at the Naval Research Laboratory, Washington, and Project Scientist for the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) instrument on UARS. Floyd hopes that more long-term records will help clear up such mysteries about the Sun.

UARS includes ten instruments designed to understand the radiation, chemistry, and dynamics of the Earth’s upper atmosphere. Of those ten, seven instruments still work.

The SUSIM and SOLSTICE instruments measure UV light from the Sun and provide insights into the relationship between UV radiation and atmospheric ozone. These two instruments were independently calibrated, each providing a check on the other. Another set of instruments measure gases like ozone, methane, water vapor, and chlorofluorocarbons (CFCs) in Earth’s atmosphere. The third group measures winds in the stratosphere, mesosphere, and the lower thermosphere and help researchers understand the global movement of gases.

In January 2003, NASA will launch the Solar Radiation and Climate Experiment (SORCE) satellite, which will provide further measurements of the Sun. By having an overlap with UARS, NASA will have two satellites making essentially the same measurements simultaneously, thereby providing a "truthing" for comparisons and an even longer term data record, Floyd said.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/2002/1114uars.html

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>