Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellite flies high to monitor sun’s influence on ozone

15.11.2002


In October, the Upper Atmosphere Research Satellite (UARS) completed the first measurement of the solar ultraviolet radiation spectrum over the duration of an 11 year solar cycle, a period marked by cyclical shifts in the Sun’s activity. This long measurement record by two instruments aboard UARS will give researchers better insight into how fluctuations in the Sun’s energy affect ozone and the Earth’s climate. In turn, the dataset gives scientists tools to document the influence of man-made chemicals on ozone loss.



Though mission success was initially declared only 18 months after its launch in September 1991, UARS has continued to track ozone levels and atmospheric gases that react with ozone. The satellite has now also recorded the Sun’s influence on ozone and other gases over an entire solar cycle.

During the 11-year solar cycle the Sun undergoes periodic changes in activity from the "solar maximum," to a period of quiet called the "solar minimum." During the solar maximum there are many sunspots, solar flares, and coronal mass ejections, which can affect communications and the atmosphere here on Earth.


"Having a complete solar cycle of data provides information necessary to distinguish the natural variations in the Earth’s atmosphere from man-made variations," said Charles Jackman, UARS Project Scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md.

"UARS has lasted so long that we now have an 11 year mission with a single set of observations spanning the entire solar cycle," said Gary Rottman, a senior scientist at the University of Colorado and Principal Investigator for the SOLar Stellar InterComparison Experiment (SOLSTICE) instrument on UARS.

This complete solar cycle UV radiation dataset provides key measurements toward better determination of the roles of natural and man-made influences on ozone.

Also, by observing a full solar cycle, scientists hope to use the additional data to better understand the Sun’s behavior.

Observatories on the Earth have found fewer sunspots in this solar cycle than the last one, but UARS measurements indicate the amount of UV radiation that struck Earth’s atmosphere during each solar maximum was about the same.

"The expected correlation between sunspot activity and UV irradiance over the long term was not found," said Linton Floyd, a researcher working at the Naval Research Laboratory, Washington, and Project Scientist for the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) instrument on UARS. Floyd hopes that more long-term records will help clear up such mysteries about the Sun.

UARS includes ten instruments designed to understand the radiation, chemistry, and dynamics of the Earth’s upper atmosphere. Of those ten, seven instruments still work.

The SUSIM and SOLSTICE instruments measure UV light from the Sun and provide insights into the relationship between UV radiation and atmospheric ozone. These two instruments were independently calibrated, each providing a check on the other. Another set of instruments measure gases like ozone, methane, water vapor, and chlorofluorocarbons (CFCs) in Earth’s atmosphere. The third group measures winds in the stratosphere, mesosphere, and the lower thermosphere and help researchers understand the global movement of gases.

In January 2003, NASA will launch the Solar Radiation and Climate Experiment (SORCE) satellite, which will provide further measurements of the Sun. By having an overlap with UARS, NASA will have two satellites making essentially the same measurements simultaneously, thereby providing a "truthing" for comparisons and an even longer term data record, Floyd said.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/2002/1114uars.html

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>