Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps oceanographers probe deep into the world of breaking wave bubbles

22.08.2002


Important ocean process examined with newly developed ’BubbleCam’



The relaxing atmosphere of a walk along the shore, especially the sounds of waves breaking on the beach, has seemingly forever lured people to coastlines.

For Grant Deane and Dale Stokes, oceanographers at Scripps Institution of Oceanography at the University of California, San Diego, the seaside sounds of hundreds of millions of air bubbles bursting at the shoreline represent an important key to understanding a variety of ocean phenomena.


In the August 22 issue of the journal Nature, Deane and Stokes provide unprecedented insight into the characteristics and dynamics of bubbles inside breaking waves. The researchers used acoustical and optical observations, including data from a high-tech "BubbleCam," to develop a new depiction of bubble sizes and creation processes.

Bubbles created in breaking ocean waves play an important role in a variety of ocean and atmospheric processes, including air-sea gas transfer, heat and moisture exchange, aerosol production, and climate change.

"Bubbles," says Deane, "turn out to be the centerpiece for a diverse range of both ocean-based and culturally important phenomena. They play a part in global climate change because the global rates of carbon dioxide exchanges are in part dictated by bubble-mediated gas transport."

Knowing that the most important property of breaking wave bubbles is their size distribution, Deane and Stokes set out to look at bubble dynamics in a new way. They probed the properties of bubbles both in a controlled environment inside wave tanks at the Scripps Hydraulics Laboratory and in the open ocean during experiments on the Scripps research platform FLIP. In each case they probed the dynamic processes that occur during the first seconds of wave breaking and bubble formation.

They also developed a unique instrument, the "BubbleCam," to meticulously track the bubble size spectrum.

"BubbleCam is a high-speed video camera with an intricate lens and light-focusing system that lets us take finely sliced pictures as waves break," said Stokes of the Scripps Marine Physical Laboratory. "We can gather all those images and feed them into a computer that does the bubble counting for us."

The results point to two distinct mechanisms controlling bubble size distribution. They found that the size distribution follows one law for bubbles smaller than about one millimeter, and another for larger bubbles. Big bubbles are formed when the wave curls over onto itself, creating the tube beloved by surfers. Smaller bubbles are created by the splash of the wave’s tip hitting its face.

"These results are one more piece of information," said Deane. "Why do you get the number and sizes of bubbles you do in breaking waves? It’s a very basic science question that we’re trying to answer. It’s like the big bang theory of bubbles as our research looks back earlier in their formation. There’s a whole cascade of length and time scales and with these results we’re up to a certain point. If we keep moving back in that direction we’ll discover more interesting physics about what’s happening."

Deane and Stokes’s results will now be incorporated into models of bubble-mediated air-sea gas transport to help improve their accuracy. Down the road, their research may lead to the development of new instruments that will allow scientists to remotely monitor greenhouse gas transfer.

"On the surface, breaking waves seem to be very complicated," said Deane. "But underneath there is a very appealing and simple process driving this. That’s the idea. There are patterns of order within the complexity. Every wave is unique and yet there are simple, underlying processes there to be found."

"The images that we capture are beautiful in an aesthetic way," said Stokes. "They are elegant. There is basic physics explaining something very complex like a breaking wave. You can see that in the mathematics and you can see that in the images."


###
Deane and Stokes’s research was supported by the National Science Foundation and the Office of Naval Research.

Images, video available upon request.

Scripps Institution of Oceanography on the web: http://scripps.ucsd.edu
Scripps News on the web: http://scrippsnews.ucsd.edu
Scripps Centennial on the web: http://scripps100.ucsd.edu

Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The scientific scope of the institution has grown since its founding in 1903. A century of Scripps science has had an invaluable impact on oceanography, on understanding of the earth, and on society. More than 300 research programs are under way today in a wide range of scientific areas. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Now plunging boldly into the 21st century, Scripps will celebrate its centennial in 2003.


Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu/

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>