Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps oceanographers probe deep into the world of breaking wave bubbles

22.08.2002


Important ocean process examined with newly developed ’BubbleCam’



The relaxing atmosphere of a walk along the shore, especially the sounds of waves breaking on the beach, has seemingly forever lured people to coastlines.

For Grant Deane and Dale Stokes, oceanographers at Scripps Institution of Oceanography at the University of California, San Diego, the seaside sounds of hundreds of millions of air bubbles bursting at the shoreline represent an important key to understanding a variety of ocean phenomena.


In the August 22 issue of the journal Nature, Deane and Stokes provide unprecedented insight into the characteristics and dynamics of bubbles inside breaking waves. The researchers used acoustical and optical observations, including data from a high-tech "BubbleCam," to develop a new depiction of bubble sizes and creation processes.

Bubbles created in breaking ocean waves play an important role in a variety of ocean and atmospheric processes, including air-sea gas transfer, heat and moisture exchange, aerosol production, and climate change.

"Bubbles," says Deane, "turn out to be the centerpiece for a diverse range of both ocean-based and culturally important phenomena. They play a part in global climate change because the global rates of carbon dioxide exchanges are in part dictated by bubble-mediated gas transport."

Knowing that the most important property of breaking wave bubbles is their size distribution, Deane and Stokes set out to look at bubble dynamics in a new way. They probed the properties of bubbles both in a controlled environment inside wave tanks at the Scripps Hydraulics Laboratory and in the open ocean during experiments on the Scripps research platform FLIP. In each case they probed the dynamic processes that occur during the first seconds of wave breaking and bubble formation.

They also developed a unique instrument, the "BubbleCam," to meticulously track the bubble size spectrum.

"BubbleCam is a high-speed video camera with an intricate lens and light-focusing system that lets us take finely sliced pictures as waves break," said Stokes of the Scripps Marine Physical Laboratory. "We can gather all those images and feed them into a computer that does the bubble counting for us."

The results point to two distinct mechanisms controlling bubble size distribution. They found that the size distribution follows one law for bubbles smaller than about one millimeter, and another for larger bubbles. Big bubbles are formed when the wave curls over onto itself, creating the tube beloved by surfers. Smaller bubbles are created by the splash of the wave’s tip hitting its face.

"These results are one more piece of information," said Deane. "Why do you get the number and sizes of bubbles you do in breaking waves? It’s a very basic science question that we’re trying to answer. It’s like the big bang theory of bubbles as our research looks back earlier in their formation. There’s a whole cascade of length and time scales and with these results we’re up to a certain point. If we keep moving back in that direction we’ll discover more interesting physics about what’s happening."

Deane and Stokes’s results will now be incorporated into models of bubble-mediated air-sea gas transport to help improve their accuracy. Down the road, their research may lead to the development of new instruments that will allow scientists to remotely monitor greenhouse gas transfer.

"On the surface, breaking waves seem to be very complicated," said Deane. "But underneath there is a very appealing and simple process driving this. That’s the idea. There are patterns of order within the complexity. Every wave is unique and yet there are simple, underlying processes there to be found."

"The images that we capture are beautiful in an aesthetic way," said Stokes. "They are elegant. There is basic physics explaining something very complex like a breaking wave. You can see that in the mathematics and you can see that in the images."


###
Deane and Stokes’s research was supported by the National Science Foundation and the Office of Naval Research.

Images, video available upon request.

Scripps Institution of Oceanography on the web: http://scripps.ucsd.edu
Scripps News on the web: http://scrippsnews.ucsd.edu
Scripps Centennial on the web: http://scripps100.ucsd.edu

Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The scientific scope of the institution has grown since its founding in 1903. A century of Scripps science has had an invaluable impact on oceanography, on understanding of the earth, and on society. More than 300 research programs are under way today in a wide range of scientific areas. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Now plunging boldly into the 21st century, Scripps will celebrate its centennial in 2003.


Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>