Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps oceanographers probe deep into the world of breaking wave bubbles

22.08.2002


Important ocean process examined with newly developed ’BubbleCam’



The relaxing atmosphere of a walk along the shore, especially the sounds of waves breaking on the beach, has seemingly forever lured people to coastlines.

For Grant Deane and Dale Stokes, oceanographers at Scripps Institution of Oceanography at the University of California, San Diego, the seaside sounds of hundreds of millions of air bubbles bursting at the shoreline represent an important key to understanding a variety of ocean phenomena.


In the August 22 issue of the journal Nature, Deane and Stokes provide unprecedented insight into the characteristics and dynamics of bubbles inside breaking waves. The researchers used acoustical and optical observations, including data from a high-tech "BubbleCam," to develop a new depiction of bubble sizes and creation processes.

Bubbles created in breaking ocean waves play an important role in a variety of ocean and atmospheric processes, including air-sea gas transfer, heat and moisture exchange, aerosol production, and climate change.

"Bubbles," says Deane, "turn out to be the centerpiece for a diverse range of both ocean-based and culturally important phenomena. They play a part in global climate change because the global rates of carbon dioxide exchanges are in part dictated by bubble-mediated gas transport."

Knowing that the most important property of breaking wave bubbles is their size distribution, Deane and Stokes set out to look at bubble dynamics in a new way. They probed the properties of bubbles both in a controlled environment inside wave tanks at the Scripps Hydraulics Laboratory and in the open ocean during experiments on the Scripps research platform FLIP. In each case they probed the dynamic processes that occur during the first seconds of wave breaking and bubble formation.

They also developed a unique instrument, the "BubbleCam," to meticulously track the bubble size spectrum.

"BubbleCam is a high-speed video camera with an intricate lens and light-focusing system that lets us take finely sliced pictures as waves break," said Stokes of the Scripps Marine Physical Laboratory. "We can gather all those images and feed them into a computer that does the bubble counting for us."

The results point to two distinct mechanisms controlling bubble size distribution. They found that the size distribution follows one law for bubbles smaller than about one millimeter, and another for larger bubbles. Big bubbles are formed when the wave curls over onto itself, creating the tube beloved by surfers. Smaller bubbles are created by the splash of the wave’s tip hitting its face.

"These results are one more piece of information," said Deane. "Why do you get the number and sizes of bubbles you do in breaking waves? It’s a very basic science question that we’re trying to answer. It’s like the big bang theory of bubbles as our research looks back earlier in their formation. There’s a whole cascade of length and time scales and with these results we’re up to a certain point. If we keep moving back in that direction we’ll discover more interesting physics about what’s happening."

Deane and Stokes’s results will now be incorporated into models of bubble-mediated air-sea gas transport to help improve their accuracy. Down the road, their research may lead to the development of new instruments that will allow scientists to remotely monitor greenhouse gas transfer.

"On the surface, breaking waves seem to be very complicated," said Deane. "But underneath there is a very appealing and simple process driving this. That’s the idea. There are patterns of order within the complexity. Every wave is unique and yet there are simple, underlying processes there to be found."

"The images that we capture are beautiful in an aesthetic way," said Stokes. "They are elegant. There is basic physics explaining something very complex like a breaking wave. You can see that in the mathematics and you can see that in the images."


###
Deane and Stokes’s research was supported by the National Science Foundation and the Office of Naval Research.

Images, video available upon request.

Scripps Institution of Oceanography on the web: http://scripps.ucsd.edu
Scripps News on the web: http://scrippsnews.ucsd.edu
Scripps Centennial on the web: http://scripps100.ucsd.edu

Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The scientific scope of the institution has grown since its founding in 1903. A century of Scripps science has had an invaluable impact on oceanography, on understanding of the earth, and on society. More than 300 research programs are under way today in a wide range of scientific areas. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Now plunging boldly into the 21st century, Scripps will celebrate its centennial in 2003.


Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu/

More articles from Earth Sciences:

nachricht Scientific ocean drilling expedition explores continental rift development in Greece
24.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>