Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Arsenic contamination lacks one-size-fits-all remedy

Though a worldwide problem, arsenic contamination of drinking water does not have a universal solution.

Instead, recent work by University of Wisconsin-Madison researchers on arsenic-tainted wells shows that appropriate treatment varies depending on the source of the contamination.

Naturally occurring arsenic in rocks is usually associated with sulfur- or iron-rich minerals, where it poses no threat to groundwater, explains lead researcher Madeline Gotkowitz, a hydrogeologist at the Wisconsin Geological and Natural History Survey.

Once it is released from mineral form into groundwater through geochemical or biological processes, however, chronic exposure to arsenic has been linked to skin lesions and increased risk of several cancers. The issue has gained international prominence in Southeast Asia but affects populations around the world.

"It's stunning how many people worldwide are affected by toxic levels of arsenic," Gotkowitz says. "There are thousands upon thousands of people who become ill from having their drinking water contaminated with arsenic."

Though on a smaller scale, arsenic-tinged groundwater is a problem in parts of the United States as well, including regions in the Northwest, East and Midwest.

Management practices in Wisconsin have been complicated by two competing sources of soluble arsenic, Gotkowitz says. Arsenic associated with sulfide minerals in rock can be released by the weathering effects of oxygen-rich environments.

Alternately, arsenic bound to iron oxides can be released by iron-reducing bacteria, which thrive in low-oxygen conditions. "There is different geochemistry in different [areas]," Gotkowitz says. "That makes it a harder nut to crack. ... People might have a similar symptom - arsenic in their water - but there are different solutions because the geologic environment is quite different."

In Wisconsin, groundwater arsenic affects some municipal water supply wells, but it is primarily an issue for rural communities and others where residents often rely upon shallow private wells.

"Large areas of Outagamie and Winnebago counties have high arsenic levels in one of the shallower aquifers," Gotkowitz says. "Upwards of 10,000 private homes are affected by having arsenic above the standard [acceptable level]."

Wells are routinely disinfected with chlorine bleach to control pathogenic and other bacteria. However, such treatment raises questions in regions with arsenic problems.

While bleach should kill off arsenic-producing bacteria, it also creates a high-oxygen environment that some worry could enhance release of additional arsenic from the rocks.

Gotkowitz and UW-Madison geologists Eric Roden and Evgenya Shelobolina evaluated the impact of chlorination on bacteria and arsenic levels in Wisconsin wells.

The results were presented at the American Geophysical Union meeting in San Francisco today (Dec. 10).

In wells with arsenic levels only moderately above the accepted standard, the scientists found that the presence of iron-reducing bacteria was associated with higher arsenic concentrations. Disinfection of these wells with chlorine adequately removed bacteria and reduced arsenic levels in the short term.

In addition, chlorination did not increase arsenic release from the surrounding rocks, showing that oxidation of the rocks is not an important source of arsenic here.

Similar effects were seen in areas with a relatively high water table, where aquifers are exposed to less oxygen.

The results suggest that disinfection is an effective way to control pathogenic bacteria and may also limit arsenic release in wells under these conditions.

"It's not like there's going to be an easy solution, but there are some basic indicators," Gotkowitz says. Under low-oxygen conditions or where water levels are high, "you might want to try to control those types of bacteria as a way to improve well water quality."

Chlorine treatment may not be appropriate in all environments, however. For example, she says, the oxidizing properties of bleach may pose more of a concern in arsenic-affected regions with lower water tables, while wells drawing from aquifers highly contaminated with arsenic are unlikely to benefit from localized treatment.

Madeline Gotkowitz | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>