Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Warming hole" delayed climate change over eastern United States

27.04.2012
50-year model suggests regional pollution obscured a global trend
Climate scientists at the Harvard School of Engineering and Applied Sciences (SEAS) have discovered that particulate pollution in the late 20th century created a "warming hole" over the eastern United States—that is, a cold patch where the effects of global warming were temporarily obscured.

While greenhouse gases like carbon dioxide and methane warm the Earth's surface, tiny particles in the air can have the reverse effect on regional scales.

"What we've shown is that particulate pollution over the eastern United States has delayed the warming that we would expect to see from increasing greenhouse gases," says lead author Eric Leibensperger (Ph.D. '11), who completed the work as a graduate student in applied physics at SEAS.

"For the sake of protecting human health and reducing acid rain, we've now cut the emissions that lead to particulate pollution," he adds, "but these cuts have caused the greenhouse warming in this region to ramp up to match the global trend."

At this point, most of the "catch-up" warming has already occurred.

The findings, published in the journal Atmospheric Chemistry and Physics, present a more complete picture of the processes that affect regional climate change. The work also carries significant implications for the future climate of industrial nations, like China, that have not yet implemented air quality regulations to the same extent as the United States.

Until the United States passed the Clean Air Act in 1970 and strengthened it in 1990, particulate pollution hung thick over the central and eastern states. Most of these particles in the atmosphere were made of sulfate, originating as sulfur emissions from coal-fired power plants. Compared to greenhouse gases, particulate pollution has a very short lifetime (about 1 week), so its distribution over the Earth is uneven.

"The primary driver of the warming hole is the aerosol pollution—these small particles," says Leibensperger. "What they do is reflect incoming sunlight, so we see a cooling effect at the surface."

This effect has been known for some time, but the new analysis demonstrates the strong impact that decreases in particulate pollution can have on regional climate.

The researchers found that interactions between clouds and particles amplified the cooling. Particles of pollution can act as nucleation sites for cloud droplets, which can in turn reflect even more sunlight than the particles would individually, leading to greater cooling at the surface.

The researchers' analysis is based on a combination of two complex models of Earth systems. The pollution data comes from the GEOS-Chem model, which was first developed at Harvard and, through a series of many updates, has since become an international standard for modeling pollution over time. The climate data comes from the general circulation model developed by NASA's Goddard Institute for Space Studies. Both models are rooted in decades' worth of observational data.

Since the early 20th century, global mean temperatures have risen—by approximately 0.8 degrees Celsius from 1906 to 2005—but in the U.S. "warming hole," temperatures decreased by as much as 1 degree Celsius during the period 1930–1990. U.S. particulate pollution peaked in 1980 and has since been reduced by about half. By 2010 the average cooling effect over the East had fallen to just 0.3 degrees Celsius.

"Such a large fraction of the sulfate has already been removed that we don’t have much more warming coming along due to further controls on sulfur emissions in the future," says principal investigator Daniel Jacob, the Vasco McCoy Family Professor of Atmospheric Chemistry and Environmental Engineering at SEAS.

Jacob is also a Professor of Earth and Planetary Sciences at Harvard and a faculty associate of the Harvard University Center for the Environment.

Besides confirming that particulate pollution plays a large role in affecting U.S. regional climate, the research emphasizes the importance of accounting for the climate impacts of particulates in future air quality policies.

"Something similar could happen in China, which is just beginning to tighten up its pollution standards," says co-author Loretta J. Mickley, a Senior Research Fellow in atmospheric chemistry at SEAS. "China could see significant climate change due to declining levels of particulate pollutants."

Sulfates are harmful to human health and can also cause acid rain, which damages ecosystems and erodes buildings.

"No one is suggesting that we should stop improving air quality, but it’s important to understand the consequences. Clearing the air could lead to regional warming," Mickley says.

Leibensperger, Jacob, and Mickley were joined by co-authors Wei-Ting Chen and John H. Seinfeld (California Institute of Technology); Athanasios Nenes (Georgia Institute of Technology); Peter J. Adams (Carnegie Mellon University); David G. Streets (Argonne National Laboratory); Naresh Kumar (Electric Power Research Institute); and David Rind (NASA Goddard Institute for Space Studies).

The research was supported by the Electric Power Research Institute (EPRI) and the U.S. Environmental Protection Agency (EPA); neither EPRI nor the EPA has officially endorsed the results. The work also benefited from resources provided by Academic Computing Services at SEAS.

Caroline Perry | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>