Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planetary ‘runaway greenhouse’ more easily triggered, research shows

31.07.2013
It might be easier than previously thought for a planet to overheat into the scorchingly uninhabitable “runaway greenhouse” stage, according to new research by astronomers at the University of Washington and the University of Victoria published July 28 in the journal Nature Geoscience.

In the runaway greenhouse stage, a planet absorbs more solar energy than it can give off to retain equilibrium. As a result, the world overheats, boiling its oceans and filling its atmosphere with steam, which leaves the planet glowing-hot and forever uninhabitable, as Venus is now.

One estimate of the inner edge of a star’s “habitable zone” is where the runaway greenhouse process begins. The habitable zone is that ring of space around a star that’s just right for water to remain in liquid form on an orbiting rocky planet’s surface, thus giving life a chance.

Revisiting this classic planetary science scenario with new computer modeling, the astronomers found a lower thermal radiation threshold for the runaway greenhouse process, meaning that stage may be easier to initiate than had been previously thought.

“The habitable zone becomes much narrower, in the sense that you can no longer get as close to the star as we thought before going into a runaway greenhouse,” said Tyler Robinson, a UW astronomy postdoctoral researcher and second author on the paper. The lead author is Colin Goldblatt of the University of Victoria.

Though further research is called for, the findings could lead to a recalibration of where the habitable zone begins and ends, with some planets having their candidacy as possible habitable worlds revoked.

“These worlds on the very edge got ‘pushed in,’ from our perspective — they are now beyond the runaway greenhouse threshold,” Robinson said.

Subsequent research, the astronomers say, is needed in part because their computer modeling was done in a “single-column, clear-sky model,” or a one-dimensional measure averaged around a planetary sphere that does not account for the atmospheric effect of clouds.

The findings apply to planet Earth as well. As the sun increases in brightness over time, Earth, too, will move into the runaway greenhouse stage — but not for a billion and a half years or so. Still, it inspired the astronomers to write, “As the solar constant increases with time, Earth’s future is analogous to Venus’s past.”

Other co-authors are Kevin J. Zahnle of the NASA Ames Research Center in Moffett Field, Calif.; and David Crisp of the Jet Propulsion Laboratory in Pasadena, Calif.

For more information, contact Robinson at 520-907-8369, or robinson@astro.washington.edu; or Goldblatt at 250-721-7641 or czg@uvic.ca.

Peter Kelley | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>